
occam 1.04159. . .

Adam Sampson

ats1@kent.ac.uk

University of Kent

http://www.cs.kent.ac.uk/

occam 1.04159. . . – p.1/124

Introduction

occam 1.04159. . . – p.2/124

What’s this workshop about?

◮ occam-π for occam 2.1 users
(i.e. what happens after CO516)

◮ Explain the new features

◮ Give you a chance to try them out

◮ Please stop me if anything isn’t clear!

occam 1.04159. . . – p.3/124

Generalities

◮ occam-π aims to be a modern language which
maintains the occam spirit

◮ (Mostly) backwards-compatible with occam 2.1

◮ A work in progress; you will find broken stuff, missing
documentation, etc.

◮ . . . and things will change in the future. . .

◮ . . . but we have used it to build big distributed
applications already

occam 1.04159. . . – p.4/124

Resources

◮ Most things are linked from:
http://occam-pi.org/

◮ No reference manual for occam-π yet – use the
occam 2.1 manual and the OEPs

◮ The Systems Group Wiki:
https://www.cs.kent.ac.uk/research/groups/sys/wiki/

Includes checklist, occam-π style guide, OccamDoc
spec, . . .

◮ Library reference (incomplete):
http://occam-pi.org/occamdoc/

occam 1.04159. . . – p.5/124

What’s on the menu?

◮ Syntax changes

◮ Mobile data

◮ Mobile channel types

◮ Sharing channels

◮ Forking

◮ Barriers

◮ Extended rendezvous

◮ Useful libraries

occam 1.04159. . . – p.6/124

Implementations

◮ KRoC is our occam-π suite for x86 systems

◮ KRoC has some oddities – particularly the compiler

◮ Make sure you’re using the latest KRoC release

◮ If that doesn’t work, try the latest SVN version

◮ If you find a bug, please report it:
kroc-bugs@kent.ac.uk

◮ For occam-π on other platforms, see the
Transterpreter:
http://www.transterpreter.org/

occam 1.04159. . . – p.7/124

Syntax changes

occam 1.04159. . . – p.8/124

Syntax changes

◮ Mostly trivial – but they make the code clearer

◮ I’ll describe the common ones

◮ There are a few more, but you’re unlikely to need
them; see the OEPs for more details

occam 1.04159. . . – p.9/124

Channel syntax example: old

PROC head (CHAN OF INT in, out)
INT x:
SEQ

in ? x
out ! x
black.hole (in)

:

occam 1.04159. . . – p.10/124

Channel syntax example: new

PROC head (CHAN INT in?, out!)
INT x:
SEQ

in ? x
out ! x
black.hole (in?)

:

◮ CHAN OF → CHAN

◮ Channel direction specifiers

◮ Use direction specifiers wherever possible – they
help catch errors sooner

occam 1.04159. . . – p.11/124

Initial variables

◮ In occam 2.1, you had to do this:

INT foo:
SEQ

foo := 42
...

◮ In occam-π, you can say:

INITIAL INT foo IS 42:
...

◮ This is treated as a kind of abbreviation – often useful
to replace an abbreviation when you want to change
the variable later, e.g.
VAL INT x IS y: → INITIAL INT x IS y:

occam 1.04159. . . – p.12/124

Array constructors

VAL []INT squares IS [i = 1 FOR 10 | i * i]:

◮ Like Haskell’s array comprehensions

◮ Easy way of generating an array constant

◮ Left hand side is a replicator

◮ Right hand side is an expression

◮ Size must be determinable at compile time (currently)

occam 1.04159. . . – p.13/124

Result parameters

◮ In occam, PROC parameters are passed by reference,
unless you say VAL

◮ . . . so PROCs can return results in variables they’re
given

◮ In occam-π, say RESULT (in the same way as VAL) to
mean “this parameter is only used to return a result”

◮ Helps the definedness checker

PROC get.random (VAL INT range,
INT seed,
RESULT INT number) ... :

occam 1.04159. . . – p.14/124

Mobile data

occam 1.04159. . . – p.15/124

Motivation

[1000000]BYTE buf:
SEQ
...
c ! buf

◮ Classical occam has no concept of reference types
(like C pointers, or Java references)

◮ Doing the above will copy 1,000,000 bytes of data

occam 1.04159. . . – p.16/124

Mobile data: more motivation

[80]BYTE buf:
SEQ
read.http.request (socket, buf)

◮ Classical occam has no way to dynamically allocate
memory

◮ How can we tell at compile time how big the buffer
should be?

◮ We want to choose the size at runtime

occam 1.04159. . . – p.17/124

Mobile data

MOBILE []BYTE buf:
SEQ
get.request.size (socket, size)
buf := MOBILE [size]BYTE
read.http.request (socket, buf)
c ! buf

◮ MOBILE []BYTE indicates a mobile reference type –
an array of BYTEs of unknown size

◮ MOBILE operator allocates a new mobile with the
given size

◮ Output only sends the reference

occam 1.04159. . . – p.18/124

But hang on. . .

CHAN MOBILE []BYTE c:
PAR
SEQ

...
c ! a.mobile
...

SEQ
...
c ? b.mobile
...

◮ . . . isn’t that terribly unsafe?

◮ In most languages, having references (pointers)
leads to aliasing, where several names can refer to
the same object. . .

occam 1.04159. . . – p.19/124

. . . well, no.

◮ In occam-π, only one name can ever refer to the
same object

◮ . . . so when you communicate or assign a mobile
reference somewhere else, then you lose it – it
becomes undefined

◮ The compiler will check that you aren’t trying to
operate upon an undefined value

◮ Don’t ignore the warnings!

occam 1.04159. . . – p.20/124

Losing it

INITIAL MOBILE []BYTE ma IS MOBILE [123]BYTE:
MOBILE []BYTE mb:

◮ Initially, ma is defined; mb is undefined

◮ Let’s do:

mb := ma

◮ Now ma is undefined; mb is defined

◮ . . . and mb refers to the array that ma used to refer to

occam 1.04159. . . – p.21/124

Leave, but don’t leave me

INITIAL MOBILE []BYTE ma IS MOBILE [123]BYTE:
MOBILE []BYTE mb:

◮ (Again:) Initially, ma is defined; mb is undefined

◮ Let’s do:

CHAN MOBILE []BYTE c:
c ! ma

◮ Now both ma and mb are undefined

occam 1.04159. . . – p.22/124

Cloning

INITIAL MOBILE []BYTE ma IS MOBILE [123]BYTE:
MOBILE []BYTE mb:

◮ You can explicitly duplicate a mobile using the CLONE
operator

◮ (Again:) Initially, ma is defined; mb is undefined

◮ If we do:

mb := CLONE ma

◮ Now both ma and mb are defined

◮ mb is a new mobile, with a copy of ma’s contents

◮ You can say c ! CLONE ma too

occam 1.04159. . . – p.23/124

Using mobiles

INITIAL MOBILE []BYTE ma IS MOBILE [123]BYTE:
MOBILE []BYTE mb:

◮ Mobile data types can be used just like their regular
counterparts

ma[42] := ’x’
SEQ i = 0 FOR SIZE ma

out ! ma[i]
PROC foo ([]BYTE bs) ... :
foo (ma)
VAL []BYTE bs IS ma:

◮ Note that ma := mb means different things for
normal and mobile arrays, though

occam 1.04159. . . – p.24/124

Many mobiles

◮ Nearly any occam data type can be made mobile

MOBILE INT x:
MOBILE []INT xs:
DATA TYPE MY.RECORD

RECORD
INT x:

:
MOBILE MY.RECORD r:

◮ A multidimensional array is just a mobile version of a
regular array – it is not an array of mobile arrays:

MOBILE [][]INT xss:

occam 1.04159. . . – p.25/124

Nested mobiles

◮ We often use MOBILE []BYTE to represent a string
of arbitrary length

◮ It’s quite often useful to have an array of strings, all of
which can be different lengths

◮ You can do this with MOBILE []MOBILE []BYTE

◮ . . . i.e. a mobile array of mobile arrays of bytes

◮ However: the existing compiler has very limited
support for nested mobiles – the above type is one of
two that work

◮ You also can’t have a non-mobile containing a
mobile. . .

occam 1.04159. . . – p.26/124

Two ways of doing mobile records

DATA TYPE MY.RECORD.1
RECORD

INT x:
:
MOBILE MY.RECORD.1 r:

◮ . . . means nearly as the same as . . .

DATA TYPE MY.RECORD.2
MOBILE RECORD

INT x:
:
MY.RECORD.2 r:

◮ . . . but the compiler knows that MY.RECORD.2
instances will always be mobile

occam 1.04159. . . – p.27/124

Mobile data summary

◮ Mobiles are safe references

◮ Assignment and communication with reference
semantics

◮ Only one process may hold a given mobile

occam 1.04159. . . – p.28/124

Exercise 1

◮ Please download:
http://occam-pi.org/picourse/q1.occ

◮ Fill in the ...s

◮ Try using the mobiles before you’ve allocated them,
and look at the error messages

occam 1.04159. . . – p.29/124

Mobile channel types

occam 1.04159. . . – p.30/124

Motivation

◮ In occam 2 programs, channels are fixed in place at
compile time

◮ . . . but what if we want to reconnect the process
network at runtime?

◮ For example, if we’re building a graphical process
network editor . . .
◮ . . . or a highly-dynamic biological simulation. . .
◮ . . . or or or. . .

◮ Let’s use our new mobility mechanism!

occam 1.04159. . . – p.31/124

Channel types

CHAN TYPE GRAPHICS.CT
MOBILE RECORD

CHAN REQUEST req?:
CHAN RESPONSE resp!:

:

◮ A channel type is a bundle of one or more related
channels

◮ . . . for example, the set of channels connecting a
client and a server

◮ Note this has to be a CHAN TYPE, else you can’t put
channels in it

◮ Channel direction specifiers are mandatory

occam 1.04159. . . – p.32/124

Channel types: more detail

CHAN TYPE GRAPHICS.CT
MOBILE RECORD

CHAN REQUEST req?:
CHAN RESPONSE resp!:

:

◮ When you create one, you get its two ends:

GRAPHICS.CT! client:
GRAPHICS.CT? server:
SEQ

client, server := MOBILE GRAPHICS.CT

◮ We call them client and server ends by convention

◮ The direction specifiers in the record are from the
server end’s point of view

occam 1.04159. . . – p.33/124

Argh, the specifiers!

◮ ! and ? are used in the type of channel type end
variables too:

GRAPHICS.CT! client:
GRAPHICS.CT? server:

◮ Mnemonic: in client-server communication, the client
always sends first

◮ . . . so the client end gets the specifier that means
send

occam 1.04159. . . – p.34/124

Using channel types

CHAN TYPE GRAPHICS.CT
MOBILE RECORD

CHAN REQUEST req?:
CHAN RESPONSE resp!:

:
GRAPHICS.CT! client:

◮ Channel types are a special kind of mobile record
(that can only contain channels)

◮ To get at the channels inside them, use []:

client[req] ! want.raster; 640; 480
client[resp] ? raster; r
CHAN REQUEST c! IS client[req]!:

occam 1.04159. . . – p.35/124

And the point of this is. . .

GRAPHICS.CT! client:

CHAN GRAPHICS.CT! c:
GRAPHICS.CT! other.client:

◮ You can communicate them, assign them, etc.

other.client := client
c ! other.client

◮ You can also pass them to and return them from
PROCs – this is what pony does:

PROC get.ct (RESULT GRAPHICS.CT! cli)
... :

get.ct (client)
... use client

occam 1.04159. . . – p.36/124

Arrays of channel types

◮ Earlier I said that you can’t have a non-mobile object
containing a mobile one. . .

◮ . . . so you can’t have a regular array of ends:

[4]GRAPHICS.CT! clients:

◮ But you can have a mobile array of ends.
Remember it has to be allocated!

INITIAL MOBILE []GRAPHICS.CT! clients IS
MOBILE [4]GRAPHICS.CT!:

clients[0] := client

◮ (This is the other working nested mobile type that I
mentioned earlier.)

occam 1.04159. . . – p.37/124

Mobile channels summary

◮ Channel types are bundles of channels

◮ Allocating a channel type gives you a client end and
a server end

◮ Channel type ends are mobile records containing
channel ends

◮ Channel ends inside channel type ends can be used
like regular channels

◮ If you want an array of ends, use a mobile array

◮ Channel types work well with the client/server design
rule – but can be used in other ways too
(“peer-to-peer”)

occam 1.04159. . . – p.38/124

Exercise 2

◮ Please download:
http://occam-pi.org/picourse/q2.occ

◮ Run it and see what it does

◮ It currently uses two channels to connect the client
and server

◮ Modify it to use a channel type:
◮ Add a CHAN TYPE declaration with two channels
◮ server and client should take a channel type

end as a parameter, rather than a pair of channels
◮ q2 will need to declare and create the channel

type ends

occam 1.04159. . . – p.39/124

Sharing channels

occam 1.04159. . . – p.40/124

Shared channels

◮ In occam 2, channels are one-to-one – as are
channel types, by default

◮ occam-π also allows:
◮ any-to-one
◮ one-to-any
◮ any-to-any

◮ We do this by declaring channel type ends as
shared, using the SHARED keyword

occam 1.04159. . . – p.41/124

Shared ends

CHAN TYPE MY.CT ... :

MY.CT! normal.client:
MY.CT? normal.server:
SHARED MY.CT! shared.client:
SHARED MY.CT? shared.server:

◮ These are still allocated by saying:

normal.client, shared.server :=
MOBILE MY.CT

(etc.)

occam 1.04159. . . – p.42/124

Fried, scrambled. . .

◮ One-to-one:

MY.CT! client:
MY.CT? server:
client, server := MOBILE MY.CT

◮ One-to-any:

MY.CT! client:
SHARED MY.CT? server:
client, server := MOBILE MY.CT

occam 1.04159. . . – p.43/124

. . . boiled or poached

◮ Any-to-one:

SHARED MY.CT! client:
MY.CT? server:
client, server := MOBILE MY.CT

◮ Any-to-any:

SHARED MY.CT! client:
SHARED MY.CT? server:
client, server := MOBILE MY.CT

occam 1.04159. . . – p.44/124

Claiming

CHAN TYPE MY.CT ... :
SHARED MY.CT! shared.client:
SHARED MY.CT? shared.server:

◮ When using a shared channel end, you must claim it
first using a CLAIM block:

...
CLAIM shared.client

shared.client[c] ! something
...
CLAIM shared.server

shared.server[c] ? something
...

occam 1.04159. . . – p.45/124

Claiming means. . .

◮ While a channel type end is claimed, nothing else
can be using it – so this preserves the no-aliasing
safety guarantee
◮ And since we have this guarantee. . .
◮ . . . communicating or assigning away a SHARED

end does not cause you to lose it

◮ Don’t claim an end for longer than you need it,
because you’ll block others trying to get at it!

occam 1.04159. . . – p.46/124

A spoonful of syntactic sugar

◮ All this messing around with channel types is a bit
awkward if you just want one shared channel. . .

◮ . . . so there’s a shorthand:

SHARED! CHAN INT c:
PAR

CLAIM c!
c ! 42

c ? x

◮ The compiler will turn this into an anonymous
channel type automatically

◮ Direction specifier indicates direction of
communication occam 1.04159. . . – p.47/124

Declaring shared channels

SHARED! CHAN INT c:

◮ SHARED and direction specifier says what sort of
channel it is:
◮ Nothing means it’s an ordinary channel
◮ SHARED! means any-to-one
◮ SHARED? means one-to-any
◮ Just SHARED means any-to-any

occam 1.04159. . . – p.48/124

Using shared channels

SHARED! CHAN INT c:

◮ You can pass the ends as an argument to PROCs:

PROC reader (CHAN INT in?) ... :
reader (c?)
PROC writer (SHARED CHAN INT out!) ... :
writer (c!)

◮ The PROCs only need to care about the end they can
see

◮ reader can just treat it like a regular channel

◮ writer needs to know it’s shared, and must CLAIM
the channel before writing

◮ No direction specifiers on SHARED in args
occam 1.04159. . . – p.49/124

Top-level shared channels

◮ One use for shared channels is error reporting –
having lots of processes able to print to the screen

◮ In occam-π, you can declare the top-level channels
as SHARED if you like:

PROC q7 (CHAN BYTE in?, out!,
SHARED CHAN BYTE err!)

...
:

◮ . . . and then just give err! to everything that needs
to be able to print error messages

occam 1.04159. . . – p.50/124

Shared channels summary

◮ Channels and channel types can be one-to-one,
one-to-any, any-to-one or any-to-any – just say
SHARED

◮ CLAIM shared ends when you need them

◮ . . . but only when you need them!

◮ You can declare shared channels directly if you only
need one

occam 1.04159. . . – p.51/124

Mobility patterns

occam 1.04159. . . – p.52/124

Registration: problem

◮ Similar to the OO observer pattern

◮ You’ve got a fixed server and a variable number of
clients

◮ The server needs to be able to talk to all of the clients

◮ Clients can start up and shut down at any time

occam 1.04159. . . – p.53/124

Registration: solution

◮ Have an any-to-one shared channel that new clients
can write to

◮ When a client starts up, it creates a one-to-one
channel, and sends the server end to the server
using the shared channel

◮ The client can then communicate with the server
along the newly-set-up private channel
◮ . . . and the server can ALT across all the private

channels it has, waiting for requests from clients

◮ When a client exits, it uses its private channel to
send an “I’m done now” message, and the server
disconnects the private channel

occam 1.04159. . . – p.54/124

Snap-back

◮ Channel types are often used for temporary
connections to a long-lived server

◮ Client ends are obtained from the server somehow

◮ When the client is done with its client end, it should
return it to the server for future reuse

◮ This can be done using one of the channels in the
channel bundle!

occam 1.04159. . . – p.55/124

Snap-back example

CHAN TYPE GRAPHICS.CT:
CHAN TYPE GRAPHICS.CT
MOBILE RECORD

... request, response channels, etc.
CHAN GRAPHICS.CT! shutdown?:

:
GRAPHICS.CT! client:
... get client
... do stuff
client[shutdown] ! client

◮ Note forward declaration (or could say
REC CHAN TYPE)

◮ Alternatively, shutdown could be a variant in the
request protocol, rather than a separate channel:
shutdown; GRAPHICS.CT! occam 1.04159. . . – p.56/124

Exercise 3

◮ Please download:
http://occam-pi.org/picourse/q3.occ

◮ This is a (relatively) simple client-server program
using the “Registration” pattern

◮ Clients ask a server to roll dice for them

◮ Note: shared channel types, shared regular channel
(register), shared top-level channel (out)

◮ Fill in the ...s in server

◮ (You don’t need to write a lot of code – this one’s
more about understanding the rest of the program)

occam 1.04159. . . – p.57/124

Exercise 3 extended

◮ If you’re bored. . .

◮ Think how to make this use the “Snap-back” pattern
too

◮ . . . and how to make it not deadlock once finished

occam 1.04159. . . – p.58/124

Part 2

occam 1.04159. . . – p.59/124

More simple stuff

occam 1.04159. . . – p.60/124

Inline

◮ In a PROC or FUNCTION header, you can now say:

INLINE PROC foo (args)

◮ When compiling the program, rather than compiling a
call to foo, the compiler will just insert the compiled
version of foo

◮ No call overhead – but bigger code; trade-off against
cache effects

◮ Only use it for small PROCs

occam 1.04159. . . – p.61/124

Recursion

◮ In occam 2, things do not come into scope until “after
the colon” – so you can’t write a recursive PROC

◮ In occam-π, you can say:

REC PROC foo (args)
...
foo (v)

:

◮ i.e. saying REC PROC rather than PROC makes the
PROC immediately available to call inside itself

◮ You can go parallel with yourself recursively!

occam 1.04159. . . – p.62/124

Recursive channel types

◮ You can use REC to refer to a channel type inside
itself too:

REC CHAN TYPE FOO
MOBILE RECORD
CHAN FOO! return?:

:

◮ If you want mutually recursive channel types (or
protocol definitions, etc.), you can do a forward
declaration:

CHAN TYPE FOO:

(i.e. “there is a channel type called FOO that I’ll
describe later”)

occam 1.04159. . . – p.63/124

Replicator steps

◮ occam 2 replicators always count upwards by ones:

SEQ i = 0 FOR 5

counts 0, 1, 2, 3, 4

◮ occam-π lets you specify a step size too:

SEQ i = 0 FOR 5 STEP 10

counts 0, 10, 20, 30, 40

◮ Negative steps are allowed

◮ Note that the FOR value is the number of steps, not
the final value

occam 1.04159. . . – p.64/124

Process priority

◮ Sometimes you want to say “if both process A and
process B are ready to run, then you should run
process A first”

◮ Useful for managing latency (e.g. making user
interface processes run at a high priority)

◮ In occam 2, you had to use the PRI PAR construct to
specify process priority

occam 1.04159. . . – p.65/124

Process priority pi

◮ In occam-π, you can explicitly fetch and adjust the
priority using two new builtins:

x := GETPRI ()
SETPRI (x + 5) -- decrease priority

◮ Priorities are integers from 0 (high) to 31 (low)

◮ Priorities are advisory – don’t rely on them!

occam 1.04159. . . – p.66/124

Forking

occam 1.04159. . . – p.67/124

Dynamic parallelism

◮ In occam 2, PAR blocks have to have a fixed number
of processes at compile time
◮ Either a regular PAR with several processes inside

it
◮ . . . or a replicated PAR where the replicator count

is a constant

◮ In occam-π, a replicated PAR can have a dynamic
replicator count:

INT x:
SEQ

read.from.user (x)
PAR i = 0 FOR x
...

occam 1.04159. . . – p.68/124

More dynamic parallelism

◮ . . . but this assumes that you know the replicator
count at the start of the PAR

◮ Suppose we’re writing a webserver – we don’t know
in advance how many connections we’ll have

◮ We want to be able to spawn new processes as
appropriate

◮ . . . which is actually how concurrency works in most
other languages

occam 1.04159. . . – p.69/124

The golden fork

◮ occam-π introduces two new keywords – FORKING
and FORK

◮ Inside a FORKING block, you can use FORK at any
time to spawn a new process

◮ When the FORKING block exits, it’ll wait for all the
spawned processes to finish

occam 1.04159. . . – p.70/124

Forking example

◮ Spawning worker processes for incoming requests

CHAN REQUEST in?:
...
FORKING
REQUEST r:
WHILE TRUE

SEQ
in ? r
FORK request.handler (r)

occam 1.04159. . . – p.71/124

FORK’s limitations

FORK request.handler (r)

◮ Currently FORK must be followed by a single PROC
call

◮ All the arguments to the PROC must be things you
could communicate across a channel :
◮ Passed by value (i.e. VAL)
◮ Shared
◮ Mobile – in which case they are transferred to the

new process

occam 1.04159. . . – p.72/124

Forking summary

◮ PAR replicator counts can now be dynamic

◮ FORKING and FORK let you spawn arbitrary numbers
of processes at runtime

◮ FORK PROC arguments have communication
semantics

occam 1.04159. . . – p.73/124

Exercise 4

◮ Please download:
http://occam-pi.org/picourse/q4.occ

◮ Modify the top-level process as suggested

◮ When you quit the loop, note how the program
doesn’t exit until all the FORKed processes are
complete

occam 1.04159. . . – p.74/124

Extended rendezvous

occam 1.04159. . . – p.75/124

Regular rendezvous

◮ This is a bit of an oddity – but it’s very useful in some
situations. . .

◮ Normally, when you do a channel communication:

c ! x || c ? x

◮ whichever of the two processes gets there first
waits for the other one,

◮ they communicate,
◮ and both are immediately able to run again

occam 1.04159. . . – p.76/124

Extended rendezvous

◮ If, instead, we use the extended input operator. . .

c ?? x
do.stuff ()

◮ Does an input from channel c into x as usual

◮ . . . but the process given executes while the writing
process is still blocked

◮ This means the writing process can’t continue until
do.stuff () has finished running

◮ (We call do.stuff () the rendezvous process)

occam 1.04159. . . – p.77/124

??, huh, what is it good for?

◮ We’ve thought of a couple of uses. . .

◮ Suppose you’ve got this network:

sender receiver

◮ But it’s not working! What’s getting sent across that
channel?

occam 1.04159. . . – p.78/124

Tap processes

◮ What you need is a “tap” process

◮ Like this:

sender receiver

to some debugging process

tap

◮ But you don’t want to change the behaviour of the
system when you add the tap

occam 1.04159. . . – p.79/124

Tap implementation

◮ So you write it like this:

PROC tap (CHAN INT in?, out!, tap!)
INT x:
WHILE TRUE
in ?? x

PAR
out ! x
tap ! x

:

◮ From the point of view of the sender and receiver
processes, this just looks like a regular channel

occam 1.04159. . . – p.80/124

Another use

◮ Providing a channel interface to external hardware or
software

PROC driver (CHAN FOO in?)
FOO f:
WHILE TRUE
in ?? f

SEQ
send.req (f)
wait.complete ()

:

◮ pony uses this to implement network channels

occam 1.04159. . . – p.81/124

Extended rendezvous ALT

◮ This works inside ALT as well – although the syntax
is rather odd:

ALT
c ? x
handle.c (x)

d ?? x
while.blocked ()
handle.d (x)

◮ Two processes after the extended input guard

◮ The rendezvous process is the first one

◮ The regular guarded process is the second one

occam 1.04159. . . – p.82/124

Extended rendezvous summary

◮ Extended input lets you execute code while the
sending process is blocked

◮ Useful for tap processes

◮ Useful for channel interfaces to other code/devices

◮ Probably useful for other things too? Let me know!

occam 1.04159. . . – p.83/124

Barriers

occam 1.04159. . . – p.84/124

Motivation

◮ Not only do occam channels let us communicate
data, they also have the effect of synchronising two
processes

◮ Neither the sender nor the receiver can proceed until
the communication can complete

◮ What if we want to synchronise more than two
processes?

◮ We use a barrier

occam 1.04159. . . – p.85/124

Barriers

◮ A barrier has a number of processes enrolled upon it

◮ When a process synchronises on the barrier, it
blocks until all the enrolled processes are trying to
synchronise. . .

◮ . . . at which point they all proceed

◮ This is equivalent to a CSP event

occam 1.04159. . . – p.86/124

Resignation

◮ A process can resign from a barrier

◮ Resignation is the opposite of enrollment: once
you’ve resigned, all the other processes synchronise
without waiting for you

◮ It’s sometimes useful to resign temporarily

occam 1.04159. . . – p.87/124

How this works in occam- π

◮ There’s a new BARRIER data type:

BARRIER b:

◮ By default, only the current process is enrolled

◮ When using PAR, you can say ENROLL to enroll all
the parallel processes on a barrier:

PAR ENROLL b
foo (b)
bar (b)
baz (b)

◮ To synchronise, you use SYNC:

SYNC b

occam 1.04159. . . – p.88/124

How this works, part 2

◮ To resign from a barrier temporarily, there’s a
RESIGN block:

RESIGN b
... code

◮ Inside the block, you cannot use b at all

◮ The compiler makes sure that you can’t SYNC on a
barrier unless you’re enrolled upon it

occam 1.04159. . . – p.89/124

Automatic resignation

◮ Suppose you’ve said:

PAR i = 0 FOR 100 ENROLL b
worker (i, b)

◮ If one worker exits, does this stop the others from
synchronising on b?

◮ No – when a process in a PAR ... ENROLL block
exits, it is automatically resigned from the barrier

occam 1.04159. . . – p.90/124

Multiple barriers

◮ You can enroll processes upon multiple barriers
within the same PAR construct:

BARRIER long, short:
PAR ENROLL long, short

PAR
long.timer (long)
short.timer (short)

BARRIER internal:
PAR ENROLL long, short, internal:
process.a (long, short, internal)
process.b (long, short, internal)

occam 1.04159. . . – p.91/124

Ph-Ph-Ph-Ph-Phases

◮ One use for barriers is to implement phased access

◮ Suppose you have some shared resource that
several processes have access to, but cannot be
used safely in parallel

◮ You could use semaphores, but they don’t guarantee
fairness

◮ You really want the processes to take turns

occam 1.04159. . . – p.92/124

Phase Two

◮ Give all the processes a barrier to synchronise on

◮ Divide your work up into phases – in phase 1, one
process uses the resource; in phase 2, another does;
and so forth

◮ At the end of each phase, everyone syncs on the
barrier

occam 1.04159. . . – p.93/124

Phase Three

◮ A particularly useful instance of this pattern:

◮ Lots of processes share an array; each needs to
update its cell, and examine some of the others

◮ You can read safely in parallel, but can’t mix reads
and writes

◮ Have two phases
◮ Phase 1: everybody reads the array
◮ Phase 2: everybody updates only their cell

◮ You can implement a cellular automaton this way

occam 1.04159. . . – p.94/124

Lazy Phases

◮ To make this more efficient, use resignation

◮ When a cell isn’t changing, have it resign from the
barrier and go to sleep

◮ When propagating changes around, wake up any
sleeping cells

◮ This means you only recalculate the areas that are
changing

◮ For more details, see CPA2005 paper!

occam 1.04159. . . – p.95/124

Mobile barriers

◮ How do you pass a barrier to a FORKed process?
◮ (since normal barriers can’t be communicated)

◮ You need a MOBILE BARRIER

◮ These have distinctly odd semantics

occam 1.04159. . . – p.96/124

Using mobile barriers

◮ Like any MOBILE, you must allocate it before use:

INITIAL MOBILE BARRIER mb IS
MOBILE BARRIER:

◮ If you hold a MOBILE BARRIER, you’re enrolled on it

◮ When you lose a reference to a barrier (if it goes out
of scope, or you assign over it), you resign from it

occam 1.04159. . . – p.97/124

Cloning mobile barriers

◮ When you CLONE one, you get another reference to
the same barrier

mc := CLONE mb

◮ Now mc is an alias for mb – this is bad!

◮ Imagine you had a process that took two barrier
arguments; you could now give it the same barrier
twice (which occam-π normally wouldn’t let you do)

◮ Generally you only use this when you’re FORKing a
process off

FORK worker (CLONE mb)

occam 1.04159. . . – p.98/124

Barriers summary

◮ Generalise channel synchronisation to any number of
processes

◮ Can use phases to control access to shared
resources

◮ Resignation allows processes to sleep while they’re
not interested

◮ We’re still finding uses for barriers!

occam 1.04159. . . – p.99/124

Exercise 5

◮ Please download:
http://occam-pi.org/picourse/q5.occ

◮ Compile and run it – note how the rowers get out of
sync fairly quickly

◮ Make it use barriers so they all row together

occam 1.04159. . . – p.100/124

User-defined operators

occam 1.04159. . . – p.101/124

Motivation

DATA TYPE COORD
RECORD

REAL32 x, y:
:

◮ Suppose you’ve defined a coordinate data type

◮ In occam 2, saying x + y would produce an error

occam 1.04159. . . – p.102/124

User-defined operators

DATA TYPE COORD
RECORD

REAL32 x, y:
:

◮ In occam-π, you can define what the + operator
means for that data type:

COORD FUNCTION "+" (VAL COORD a, b) IS
[a[x] + b[x], a[y] + b[y]]:

◮ This is a user-defined operator

occam 1.04159. . . – p.103/124

Number, please?

COORD FUNCTION "+" (VAL COORD a, b) IS
[a[x] + b[x], a[y] + b[y]]:

◮ Like a normal function definition, but with the
operator in quotes in place of the function name

◮ Any operator works:
+ - / * PLUS MINUS \/ /\ . . .

◮ Dyadic operators (as above) have two args; monadic
operators have one

◮ You can define multiple "+" operators for different
types. . .

◮ . . . even regular occam types (like INT or [4]BOOL)!

◮ There’s clearly some deep magic going on here
occam 1.04159. . . – p.104/124

Overloading

◮ This is overloading on argument types – like in C++
or Java

FOO FUNCTION "+" (VAL FOO a, b) IS ... :
BAR FUNCTION "+" (VAL BAR a, b) IS ... :
BAZ FUNCTION "+" (VAL BAZ a, b) IS ... :

◮ When you use an operator, the compiler will look at
the types of the arguments to decide which version to
use

◮ Later definitions override earlier ones

◮ You can’t do the same with regular PROC or
FUNCTION arguments (at least yet)

occam 1.04159. . . – p.105/124

Here be dragons

◮ Many people think operator overloading is a bad idea

◮ What looks like a simple operation might actually be
doing some big expensive calculation

◮ It’s easy to be deliberately perverse:

INT FUNCTION "+" (VAL INT a, b) IS a - b:

ASSERT ((4 + 3) = 1)

◮ And why are 4 and 3 there INTs and not, say,
BYTEs? There are special rules for literals and
UDOs. . .

◮ Tread very carefully when using this!

occam 1.04159. . . – p.106/124

Exercise 6

◮ Please download:
http://occam-pi.org/picourse/q6.occ

◮ Implement + and * for COMPLEX

◮ Remember * as a string literal is "**"

occam 1.04159. . . – p.107/124

Protocol inheritance

occam 1.04159. . . – p.108/124

Motivation

◮ In OO design, objects have interfaces with methods

◮ When we want to add new functionality, we extend
the interface with more methods

◮ In process-oriented design, process communicate
using protocols

◮ To add new functionality, we extend existing protocols
with new messages

occam 1.04159. . . – p.109/124

Syntax

PROTOCOL A
CASE

foo; INT
bar

:
PROTOCOL B EXTENDS A
CASE

baz
:

◮ The B protocol now has foo, bar and baz variants

◮ (KRoC limitation: A and B must be declared in the
same source file)

occam 1.04159. . . – p.110/124

And the point of this is. . .

PROTOCOL B EXTENDS A ... :
PROC sends.a (CHAN A out!) ... :
PROC reads.b (CHAN B in?) ... :
CHAN B c:
PAR
sends.a (c!)
reads.b (c?)

◮ A process that outputs using A can be connected to a
channel carrying B

◮ No need to change sends.a when we extend the A
protocol

occam 1.04159. . . – p.111/124

Multiple inheritance

◮ You can extend multiple protocols:

PROTOCOL MANY EXTENDS ONE, TWO:

◮ Doing this means you pick up all the variants from
ONE and TWO

◮ Variants with the same name must have the same
structure

◮ . . . but might not necessarily have the same meaning!

◮ This is isomorphic to OO multiple inheritance – which
is generally considered a really bad idea; be cautious

occam 1.04159. . . – p.112/124

Protocol inheritance summary

◮ You can extend an existing protocol with new variants

◮ Processes writing to channels of the old protocol can
write to channels of the extended protocol

occam 1.04159. . . – p.113/124

Exercise 7

◮ Please download:
http://occam-pi.org/picourse/q7.occ

◮ We have some clients and an FM/MW radio

◮ . . . but we’ve just bought a shiny new radio with DAB

◮ Make the radio support DAB via a new protocol that
extends TUNER

◮ . . . without changing the client code

occam 1.04159. . . – p.114/124

Writing real programs

occam 1.04159. . . – p.115/124

Libraries

◮ So now you know the language. . .

◮ What else do you need for a real occam-π
application?

◮ Libraries!

◮ I’ll go through some of the useful ones. . .

◮ It’s a mess – we’ll tidy it up in the near future

occam 1.04159. . . – p.116/124

Using libraries

◮ Include the appropriate headers and #USE the .lib:

#INCLUDE "consts.inc"
#USE "course.lib"

◮ Link with -llibname (and other libraries as
required)

kroc my.occ -lcourse

◮ This should all be in the OccamDoc. . .

occam 1.04159. . . – p.117/124

IO

◮ occam 2 programs had hostio, hostsp, etc.

◮ These days we don’t normally use those – mostly
because everybody’s used to using the course
library. . .

◮ out.int etc. are in the course library

◮ filelib contains various POSIX bindings
◮ In particular, file.get.options, a
getopt-style option parser; please use it instead
of ask.int when getting parameters

occam 1.04159. . . – p.118/124

Networking

◮ socklib has most of the standard POSIX
networking stuff

◮ The occam web server’s built on this

◮ For transparently-networked occam-π applications,
there’s pony: network channels that behave like
regular occam channels

◮ See Mario’s thesis

occam 1.04159. . . – p.119/124

Multimedia

◮ sdlraster provides trivial 2D bitmap graphics

◮ Adam’s got a 2D vector graphics package, and audio
output bindings

◮ Damian’s OpenGL bindings do accelerated 3D

◮ Carl’s video library handles various media types and
video IO

occam 1.04159. . . – p.120/124

Doing your own bindings

◮ There are several ways of binding to C code from
occam-π

◮ The “old” FFI interface – simple, a bit awkward to use

◮ Damian’s SWIG patches – automatically generate
bindings from C headers

◮ CIF – occam-like concurrency and channel
communications in C

◮ Plenty of examples around if you’re interested

occam 1.04159. . . – p.121/124

OccamDoc

◮ Standard for inline documentation – like JavaDoc

◮ See the Wiki for the syntax; it’s pretty obvious

--* Launch the nuclear missiles
PROC launch.missiles () ... :

◮ The occamdoc program converts these to HTML (via
XML and XSLT, so other formats also doable)

occamdoc -d outputdir *.occ *.inc

◮ Some libraries have OccamDoc markup already

occam 1.04159. . . – p.122/124

Exercise 8

◮ Please download:
http://occam-pi.org/picourse/q8.occ

◮ Draw some pretty graphics!

◮ For example, “munching squares”:

clear the screen
for each T from 0 .. (width - 1)

for each X from 0 .. (width - 1)
plot the point (X, X xor T)

draw the screen

occam 1.04159. . . – p.123/124

That’s all, folks!

occam 1.04159. . . – p.124/124

	Introduction
	What's this workshop about?
	Generalities
	Resources
	What's on the menu?
	Implementations
	Syntax changes
	Syntax changes
	Channel syntax example: old
	Channel syntax example: new
	Initial variables
	Array constructors
	Result parameters
	Mobile data
	Motivation
	Mobile data: more motivation
	Mobile data
	But hang onldots
	ldots well, no.
	Losing it
	Leave, but don't leave me
	Cloning
	Using mobiles
	Many mobiles
	Nested mobiles
	Two ways of doing mobile records
	Mobile data summary
	Exercise 1
	Mobile channel types
	Motivation
	Channel types
	Channel types: more detail
	Argh, the specifiers!
	Using channel types
	And the point of this isldots
	Arrays of channel types
	Mobile channels summary
	Exercise 2
	Sharing channels
	Shared channels
	Shared ends
	Fried, scrambledldots
	ldots boiled or poached
	Claiming
	Claiming meansldots
	A spoonful of syntactic sugar
	Declaring shared channels
	Using shared channels
	Top-level shared channels
	Shared channels summary
	Mobility patterns
	Registration: problem
	Registration: solution
	Snap-back
	Snap-back example
	Exercise 3
	Exercise 3 extended
	Part 2
	More simple stuff
	Inline
	Recursion
	Recursive channel types
	Replicator steps
	Process priority
	Process priority pi
	Forking
	Dynamic parallelism
	More dynamic parallelism
	The golden fork
	Forking example
	{	t FORK}'s limitations
	Forking summary
	Exercise 4
	Extended rendezvous
	Regular rendezvous
	Extended rendezvous
	{	t ??}, huh, what is it good for?
	Tap processes
	Tap implementation
	Another use
	Extended rendezvous {	t ALT}
	Extended rendezvous summary
	Barriers
	Motivation
	Barriers
	Resignation
	How this works in occampi
	How this works, part 2
	Automatic resignation
	Multiple barriers
	Ph-Ph-Ph-Ph-Phases
	Phase Two
	Phase Three
	Lazy Phases
	Mobile barriers
	Using mobile barriers
	Cloning mobile barriers
	Barriers summary
	Exercise 5
	User-defined operators
	Motivation
	User-defined operators
	Number, please?
	Overloading
	Here be dragons
	Exercise 6
	Protocol inheritance
	Motivation
	Syntax
	And the point of this isldots
	Multiple inheritance
	Protocol inheritance summary
	Exercise 7
	Writing real programs
	Libraries
	Using libraries
	IO
	Networking
	Multimedia
	Doing your own bindings
	OccamDoc
	Exercise 8
	That's all, folks!

