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Introduction
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What’s this workshop about?

◮ occam-π for occam 2.1 users
(i.e. what happens after CO516)

◮ Explain the new features

◮ Give you a chance to try them out

◮ Please stop me if anything isn’t clear!
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Generalities

◮ occam-π aims to be a modern language which
maintains the occam spirit

◮ (Mostly) backwards-compatible with occam 2.1

◮ A work in progress; you will find broken stuff, missing
documentation, etc.

◮ . . . and things will change in the future. . .

◮ . . . but we have used it to build big distributed
applications already
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Resources

◮ Most things are linked from:
http://occam-pi.org/

◮ No reference manual for occam-π yet – use the
occam 2.1 manual and the OEPs

◮ The Systems Group Wiki:
https://www.cs.kent.ac.uk/research/groups/sys/wiki/

Includes checklist, occam-π style guide, OccamDoc
spec, . . .

◮ Library reference (incomplete):
http://occam-pi.org/occamdoc/
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What’s on the menu?

◮ Syntax changes

◮ Mobile data

◮ Mobile channel types

◮ Sharing channels

◮ Forking

◮ Barriers

◮ Extended rendezvous

◮ Useful libraries
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Implementations

◮ KRoC is our occam-π suite for x86 systems

◮ KRoC has some oddities – particularly the compiler

◮ Make sure you’re using the latest KRoC release

◮ If that doesn’t work, try the latest SVN version

◮ If you find a bug, please report it:
kroc-bugs@kent.ac.uk

◮ For occam-π on other platforms, see the
Transterpreter:
http://www.transterpreter.org/
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Syntax changes
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Syntax changes

◮ Mostly trivial – but they make the code clearer

◮ I’ll describe the common ones

◮ There are a few more, but you’re unlikely to need
them; see the OEPs for more details
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Channel syntax example: old

PROC head (CHAN OF INT in, out)
INT x:
SEQ

in ? x
out ! x
black.hole (in)

:
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Channel syntax example: new

PROC head (CHAN INT in?, out!)
INT x:
SEQ

in ? x
out ! x
black.hole (in?)

:

◮ CHAN OF → CHAN

◮ Channel direction specifiers

◮ Use direction specifiers wherever possible – they
help catch errors sooner
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Initial variables

◮ In occam 2.1, you had to do this:

INT foo:
SEQ

foo := 42
...

◮ In occam-π, you can say:

INITIAL INT foo IS 42:
...

◮ This is treated as a kind of abbreviation – often useful
to replace an abbreviation when you want to change
the variable later, e.g.
VAL INT x IS y: → INITIAL INT x IS y:
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Array constructors

VAL []INT squares IS [i = 1 FOR 10 | i * i]:

◮ Like Haskell’s array comprehensions

◮ Easy way of generating an array constant

◮ Left hand side is a replicator

◮ Right hand side is an expression

◮ Size must be determinable at compile time (currently)
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Result parameters

◮ In occam, PROC parameters are passed by reference,
unless you say VAL

◮ . . . so PROCs can return results in variables they’re
given

◮ In occam-π, say RESULT (in the same way as VAL) to
mean “this parameter is only used to return a result”

◮ Helps the definedness checker

PROC get.random (VAL INT range,
INT seed,
RESULT INT number) ... :
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Mobile data
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Motivation

[1000000]BYTE buf:
SEQ
...
c ! buf

◮ Classical occam has no concept of reference types
(like C pointers, or Java references)

◮ Doing the above will copy 1,000,000 bytes of data
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Mobile data: more motivation

[80]BYTE buf:
SEQ
read.http.request (socket, buf)

◮ Classical occam has no way to dynamically allocate
memory

◮ How can we tell at compile time how big the buffer
should be?

◮ We want to choose the size at runtime
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Mobile data

MOBILE []BYTE buf:
SEQ
get.request.size (socket, size)
buf := MOBILE [size]BYTE
read.http.request (socket, buf)
c ! buf

◮ MOBILE []BYTE indicates a mobile reference type –
an array of BYTEs of unknown size

◮ MOBILE operator allocates a new mobile with the
given size

◮ Output only sends the reference
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But hang on. . .

CHAN MOBILE []BYTE c:
PAR
SEQ

...
c ! a.mobile
...

SEQ
...
c ? b.mobile
...

◮ . . . isn’t that terribly unsafe?

◮ In most languages, having references (pointers)
leads to aliasing, where several names can refer to
the same object. . .
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. . . well, no.

◮ In occam-π, only one name can ever refer to the
same object

◮ . . . so when you communicate or assign a mobile
reference somewhere else, then you lose it – it
becomes undefined

◮ The compiler will check that you aren’t trying to
operate upon an undefined value

◮ Don’t ignore the warnings!
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Losing it

INITIAL MOBILE []BYTE ma IS MOBILE [123]BYTE:
MOBILE []BYTE mb:

◮ Initially, ma is defined; mb is undefined

◮ Let’s do:

mb := ma

◮ Now ma is undefined; mb is defined

◮ . . . and mb refers to the array that ma used to refer to
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Leave, but don’t leave me

INITIAL MOBILE []BYTE ma IS MOBILE [123]BYTE:
MOBILE []BYTE mb:

◮ (Again:) Initially, ma is defined; mb is undefined

◮ Let’s do:

CHAN MOBILE []BYTE c:
c ! ma

◮ Now both ma and mb are undefined
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Cloning

INITIAL MOBILE []BYTE ma IS MOBILE [123]BYTE:
MOBILE []BYTE mb:

◮ You can explicitly duplicate a mobile using the CLONE
operator

◮ (Again:) Initially, ma is defined; mb is undefined

◮ If we do:

mb := CLONE ma

◮ Now both ma and mb are defined

◮ mb is a new mobile, with a copy of ma’s contents

◮ You can say c ! CLONE ma too
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Using mobiles

INITIAL MOBILE []BYTE ma IS MOBILE [123]BYTE:
MOBILE []BYTE mb:

◮ Mobile data types can be used just like their regular
counterparts

ma[42] := ’x’
SEQ i = 0 FOR SIZE ma

out ! ma[i]
PROC foo ([]BYTE bs) ... :
foo (ma)
VAL []BYTE bs IS ma:

◮ Note that ma := mb means different things for
normal and mobile arrays, though
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Many mobiles

◮ Nearly any occam data type can be made mobile

MOBILE INT x:
MOBILE []INT xs:
DATA TYPE MY.RECORD

RECORD
INT x:

:
MOBILE MY.RECORD r:

◮ A multidimensional array is just a mobile version of a
regular array – it is not an array of mobile arrays:

MOBILE [][]INT xss:
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Nested mobiles

◮ We often use MOBILE []BYTE to represent a string
of arbitrary length

◮ It’s quite often useful to have an array of strings, all of
which can be different lengths

◮ You can do this with MOBILE []MOBILE []BYTE

◮ . . . i.e. a mobile array of mobile arrays of bytes

◮ However: the existing compiler has very limited
support for nested mobiles – the above type is one of
two that work

◮ You also can’t have a non-mobile containing a
mobile. . .
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Two ways of doing mobile records

DATA TYPE MY.RECORD.1
RECORD

INT x:
:
MOBILE MY.RECORD.1 r:

◮ . . . means nearly as the same as . . .

DATA TYPE MY.RECORD.2
MOBILE RECORD

INT x:
:
MY.RECORD.2 r:

◮ . . . but the compiler knows that MY.RECORD.2
instances will always be mobile
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Mobile data summary

◮ Mobiles are safe references

◮ Assignment and communication with reference
semantics

◮ Only one process may hold a given mobile
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Exercise 1

◮ Please download:
http://occam-pi.org/picourse/q1.occ

◮ Fill in the ...s

◮ Try using the mobiles before you’ve allocated them,
and look at the error messages
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Mobile channel types
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Motivation

◮ In occam 2 programs, channels are fixed in place at
compile time

◮ . . . but what if we want to reconnect the process
network at runtime?

◮ For example, if we’re building a graphical process
network editor . . .
◮ . . . or a highly-dynamic biological simulation. . .
◮ . . . or or or. . .

◮ Let’s use our new mobility mechanism!
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Channel types

CHAN TYPE GRAPHICS.CT
MOBILE RECORD

CHAN REQUEST req?:
CHAN RESPONSE resp!:

:

◮ A channel type is a bundle of one or more related
channels

◮ . . . for example, the set of channels connecting a
client and a server

◮ Note this has to be a CHAN TYPE, else you can’t put
channels in it

◮ Channel direction specifiers are mandatory
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Channel types: more detail

CHAN TYPE GRAPHICS.CT
MOBILE RECORD

CHAN REQUEST req?:
CHAN RESPONSE resp!:

:

◮ When you create one, you get its two ends:

GRAPHICS.CT! client:
GRAPHICS.CT? server:
SEQ

client, server := MOBILE GRAPHICS.CT

◮ We call them client and server ends by convention

◮ The direction specifiers in the record are from the
server end’s point of view
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Argh, the specifiers!

◮ ! and ? are used in the type of channel type end
variables too:

GRAPHICS.CT! client:
GRAPHICS.CT? server:

◮ Mnemonic: in client-server communication, the client
always sends first

◮ . . . so the client end gets the specifier that means
send
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Using channel types

CHAN TYPE GRAPHICS.CT
MOBILE RECORD

CHAN REQUEST req?:
CHAN RESPONSE resp!:

:
GRAPHICS.CT! client:

◮ Channel types are a special kind of mobile record
(that can only contain channels)

◮ To get at the channels inside them, use []:

client[req] ! want.raster; 640; 480
client[resp] ? raster; r
CHAN REQUEST c! IS client[req]!:
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And the point of this is. . .

GRAPHICS.CT! client:

CHAN GRAPHICS.CT! c:
GRAPHICS.CT! other.client:

◮ You can communicate them, assign them, etc.

other.client := client
c ! other.client

◮ You can also pass them to and return them from
PROCs – this is what pony does:

PROC get.ct (RESULT GRAPHICS.CT! cli)
... :

get.ct (client)
... use client
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Arrays of channel types

◮ Earlier I said that you can’t have a non-mobile object
containing a mobile one. . .

◮ . . . so you can’t have a regular array of ends:

[4]GRAPHICS.CT! clients:

◮ But you can have a mobile array of ends.
Remember it has to be allocated!

INITIAL MOBILE []GRAPHICS.CT! clients IS
MOBILE [4]GRAPHICS.CT!:

clients[0] := client

◮ (This is the other working nested mobile type that I
mentioned earlier.)
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Mobile channels summary

◮ Channel types are bundles of channels

◮ Allocating a channel type gives you a client end and
a server end

◮ Channel type ends are mobile records containing
channel ends

◮ Channel ends inside channel type ends can be used
like regular channels

◮ If you want an array of ends, use a mobile array

◮ Channel types work well with the client/server design
rule – but can be used in other ways too
(“peer-to-peer”)
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Exercise 2

◮ Please download:
http://occam-pi.org/picourse/q2.occ

◮ Run it and see what it does

◮ It currently uses two channels to connect the client
and server

◮ Modify it to use a channel type:
◮ Add a CHAN TYPE declaration with two channels
◮ server and client should take a channel type

end as a parameter, rather than a pair of channels
◮ q2 will need to declare and create the channel

type ends
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Sharing channels
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Shared channels

◮ In occam 2, channels are one-to-one – as are
channel types, by default

◮ occam-π also allows:
◮ any-to-one
◮ one-to-any
◮ any-to-any

◮ We do this by declaring channel type ends as
shared, using the SHARED keyword
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Shared ends

CHAN TYPE MY.CT ... :

MY.CT! normal.client:
MY.CT? normal.server:
SHARED MY.CT! shared.client:
SHARED MY.CT? shared.server:

◮ These are still allocated by saying:

normal.client, shared.server :=
MOBILE MY.CT

(etc.)

occam 1.04159. . . – p.42/124



Fried, scrambled. . .

◮ One-to-one:

MY.CT! client:
MY.CT? server:
client, server := MOBILE MY.CT

◮ One-to-any:

MY.CT! client:
SHARED MY.CT? server:
client, server := MOBILE MY.CT
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. . . boiled or poached

◮ Any-to-one:

SHARED MY.CT! client:
MY.CT? server:
client, server := MOBILE MY.CT

◮ Any-to-any:

SHARED MY.CT! client:
SHARED MY.CT? server:
client, server := MOBILE MY.CT
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Claiming

CHAN TYPE MY.CT ... :
SHARED MY.CT! shared.client:
SHARED MY.CT? shared.server:

◮ When using a shared channel end, you must claim it
first using a CLAIM block:

...
CLAIM shared.client

shared.client[c] ! something
...
CLAIM shared.server

shared.server[c] ? something
...
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Claiming means. . .

◮ While a channel type end is claimed, nothing else
can be using it – so this preserves the no-aliasing
safety guarantee
◮ And since we have this guarantee. . .
◮ . . . communicating or assigning away a SHARED

end does not cause you to lose it

◮ Don’t claim an end for longer than you need it,
because you’ll block others trying to get at it!
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A spoonful of syntactic sugar

◮ All this messing around with channel types is a bit
awkward if you just want one shared channel. . .

◮ . . . so there’s a shorthand:

SHARED! CHAN INT c:
PAR

CLAIM c!
c ! 42

c ? x

◮ The compiler will turn this into an anonymous
channel type automatically

◮ Direction specifier indicates direction of
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Declaring shared channels

SHARED! CHAN INT c:

◮ SHARED and direction specifier says what sort of
channel it is:
◮ Nothing means it’s an ordinary channel
◮ SHARED! means any-to-one
◮ SHARED? means one-to-any
◮ Just SHARED means any-to-any
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Using shared channels

SHARED! CHAN INT c:

◮ You can pass the ends as an argument to PROCs:

PROC reader (CHAN INT in?) ... :
reader (c?)
PROC writer (SHARED CHAN INT out!) ... :
writer (c!)

◮ The PROCs only need to care about the end they can
see

◮ reader can just treat it like a regular channel

◮ writer needs to know it’s shared, and must CLAIM
the channel before writing

◮ No direction specifiers on SHARED in args
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Top-level shared channels

◮ One use for shared channels is error reporting –
having lots of processes able to print to the screen

◮ In occam-π, you can declare the top-level channels
as SHARED if you like:

PROC q7 (CHAN BYTE in?, out!,
SHARED CHAN BYTE err!)

...
:

◮ . . . and then just give err! to everything that needs
to be able to print error messages
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Shared channels summary

◮ Channels and channel types can be one-to-one,
one-to-any, any-to-one or any-to-any – just say
SHARED

◮ CLAIM shared ends when you need them

◮ . . . but only when you need them!

◮ You can declare shared channels directly if you only
need one
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Mobility patterns
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Registration: problem

◮ Similar to the OO observer pattern

◮ You’ve got a fixed server and a variable number of
clients

◮ The server needs to be able to talk to all of the clients

◮ Clients can start up and shut down at any time
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Registration: solution

◮ Have an any-to-one shared channel that new clients
can write to

◮ When a client starts up, it creates a one-to-one
channel, and sends the server end to the server
using the shared channel

◮ The client can then communicate with the server
along the newly-set-up private channel
◮ . . . and the server can ALT across all the private

channels it has, waiting for requests from clients

◮ When a client exits, it uses its private channel to
send an “I’m done now” message, and the server
disconnects the private channel
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Snap-back

◮ Channel types are often used for temporary
connections to a long-lived server

◮ Client ends are obtained from the server somehow

◮ When the client is done with its client end, it should
return it to the server for future reuse

◮ This can be done using one of the channels in the
channel bundle!
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Snap-back example

CHAN TYPE GRAPHICS.CT:
CHAN TYPE GRAPHICS.CT
MOBILE RECORD

... request, response channels, etc.
CHAN GRAPHICS.CT! shutdown?:

:
GRAPHICS.CT! client:
... get client
... do stuff
client[shutdown] ! client

◮ Note forward declaration (or could say
REC CHAN TYPE)

◮ Alternatively, shutdown could be a variant in the
request protocol, rather than a separate channel:
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Exercise 3

◮ Please download:
http://occam-pi.org/picourse/q3.occ

◮ This is a (relatively) simple client-server program
using the “Registration” pattern

◮ Clients ask a server to roll dice for them

◮ Note: shared channel types, shared regular channel
(register), shared top-level channel (out)

◮ Fill in the ...s in server

◮ (You don’t need to write a lot of code – this one’s
more about understanding the rest of the program)
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Exercise 3 extended

◮ If you’re bored. . .

◮ Think how to make this use the “Snap-back” pattern
too

◮ . . . and how to make it not deadlock once finished
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Part 2
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More simple stuff
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Inline

◮ In a PROC or FUNCTION header, you can now say:

INLINE PROC foo (args)

◮ When compiling the program, rather than compiling a
call to foo, the compiler will just insert the compiled
version of foo

◮ No call overhead – but bigger code; trade-off against
cache effects

◮ Only use it for small PROCs
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Recursion

◮ In occam 2, things do not come into scope until “after
the colon” – so you can’t write a recursive PROC

◮ In occam-π, you can say:

REC PROC foo (args)
...
foo (v)

:

◮ i.e. saying REC PROC rather than PROC makes the
PROC immediately available to call inside itself

◮ You can go parallel with yourself recursively!
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Recursive channel types

◮ You can use REC to refer to a channel type inside
itself too:

REC CHAN TYPE FOO
MOBILE RECORD
CHAN FOO! return?:

:

◮ If you want mutually recursive channel types (or
protocol definitions, etc.), you can do a forward
declaration:

CHAN TYPE FOO:

(i.e. “there is a channel type called FOO that I’ll
describe later”)
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Replicator steps

◮ occam 2 replicators always count upwards by ones:

SEQ i = 0 FOR 5

counts 0, 1, 2, 3, 4

◮ occam-π lets you specify a step size too:

SEQ i = 0 FOR 5 STEP 10

counts 0, 10, 20, 30, 40

◮ Negative steps are allowed

◮ Note that the FOR value is the number of steps, not
the final value
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Process priority

◮ Sometimes you want to say “if both process A and
process B are ready to run, then you should run
process A first”

◮ Useful for managing latency (e.g. making user
interface processes run at a high priority)

◮ In occam 2, you had to use the PRI PAR construct to
specify process priority
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Process priority pi

◮ In occam-π, you can explicitly fetch and adjust the
priority using two new builtins:

x := GETPRI ()
SETPRI (x + 5) -- decrease priority

◮ Priorities are integers from 0 (high) to 31 (low)

◮ Priorities are advisory – don’t rely on them!
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Forking
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Dynamic parallelism

◮ In occam 2, PAR blocks have to have a fixed number
of processes at compile time
◮ Either a regular PAR with several processes inside

it
◮ . . . or a replicated PAR where the replicator count

is a constant

◮ In occam-π, a replicated PAR can have a dynamic
replicator count:

INT x:
SEQ

read.from.user (x)
PAR i = 0 FOR x
...
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More dynamic parallelism

◮ . . . but this assumes that you know the replicator
count at the start of the PAR

◮ Suppose we’re writing a webserver – we don’t know
in advance how many connections we’ll have

◮ We want to be able to spawn new processes as
appropriate

◮ . . . which is actually how concurrency works in most
other languages
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The golden fork

◮ occam-π introduces two new keywords – FORKING
and FORK

◮ Inside a FORKING block, you can use FORK at any
time to spawn a new process

◮ When the FORKING block exits, it’ll wait for all the
spawned processes to finish
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Forking example

◮ Spawning worker processes for incoming requests

CHAN REQUEST in?:
...
FORKING
REQUEST r:
WHILE TRUE

SEQ
in ? r
FORK request.handler (r)
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FORK’s limitations

FORK request.handler (r)

◮ Currently FORK must be followed by a single PROC
call

◮ All the arguments to the PROC must be things you
could communicate across a channel :
◮ Passed by value (i.e. VAL)
◮ Shared
◮ Mobile – in which case they are transferred to the

new process
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Forking summary

◮ PAR replicator counts can now be dynamic

◮ FORKING and FORK let you spawn arbitrary numbers
of processes at runtime

◮ FORK PROC arguments have communication
semantics
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Exercise 4

◮ Please download:
http://occam-pi.org/picourse/q4.occ

◮ Modify the top-level process as suggested

◮ When you quit the loop, note how the program
doesn’t exit until all the FORKed processes are
complete
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Extended rendezvous
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Regular rendezvous

◮ This is a bit of an oddity – but it’s very useful in some
situations. . .

◮ Normally, when you do a channel communication:

c ! x || c ? x

◮ whichever of the two processes gets there first
waits for the other one,

◮ they communicate,
◮ and both are immediately able to run again
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Extended rendezvous

◮ If, instead, we use the extended input operator. . .

c ?? x
do.stuff ()

◮ Does an input from channel c into x as usual

◮ . . . but the process given executes while the writing
process is still blocked

◮ This means the writing process can’t continue until
do.stuff () has finished running

◮ (We call do.stuff () the rendezvous process)
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??, huh, what is it good for?

◮ We’ve thought of a couple of uses. . .

◮ Suppose you’ve got this network:

sender receiver

◮ But it’s not working! What’s getting sent across that
channel?
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Tap processes

◮ What you need is a “tap” process

◮ Like this:

sender receiver

to some debugging process

tap

◮ But you don’t want to change the behaviour of the
system when you add the tap
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Tap implementation

◮ So you write it like this:

PROC tap (CHAN INT in?, out!, tap!)
INT x:
WHILE TRUE
in ?? x

PAR
out ! x
tap ! x

:

◮ From the point of view of the sender and receiver
processes, this just looks like a regular channel
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Another use

◮ Providing a channel interface to external hardware or
software

PROC driver (CHAN FOO in?)
FOO f:
WHILE TRUE
in ?? f

SEQ
send.req (f)
wait.complete ()

:

◮ pony uses this to implement network channels
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Extended rendezvous ALT

◮ This works inside ALT as well – although the syntax
is rather odd:

ALT
c ? x
handle.c (x)

d ?? x
while.blocked ()
handle.d (x)

◮ Two processes after the extended input guard

◮ The rendezvous process is the first one

◮ The regular guarded process is the second one
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Extended rendezvous summary

◮ Extended input lets you execute code while the
sending process is blocked

◮ Useful for tap processes

◮ Useful for channel interfaces to other code/devices

◮ Probably useful for other things too? Let me know!
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Barriers
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Motivation

◮ Not only do occam channels let us communicate
data, they also have the effect of synchronising two
processes

◮ Neither the sender nor the receiver can proceed until
the communication can complete

◮ What if we want to synchronise more than two
processes?

◮ We use a barrier
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Barriers

◮ A barrier has a number of processes enrolled upon it

◮ When a process synchronises on the barrier, it
blocks until all the enrolled processes are trying to
synchronise. . .

◮ . . . at which point they all proceed

◮ This is equivalent to a CSP event
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Resignation

◮ A process can resign from a barrier

◮ Resignation is the opposite of enrollment: once
you’ve resigned, all the other processes synchronise
without waiting for you

◮ It’s sometimes useful to resign temporarily
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How this works in occam- π

◮ There’s a new BARRIER data type:

BARRIER b:

◮ By default, only the current process is enrolled

◮ When using PAR, you can say ENROLL to enroll all
the parallel processes on a barrier:

PAR ENROLL b
foo (b)
bar (b)
baz (b)

◮ To synchronise, you use SYNC:

SYNC b
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How this works, part 2

◮ To resign from a barrier temporarily, there’s a
RESIGN block:

RESIGN b
... code

◮ Inside the block, you cannot use b at all

◮ The compiler makes sure that you can’t SYNC on a
barrier unless you’re enrolled upon it
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Automatic resignation

◮ Suppose you’ve said:

PAR i = 0 FOR 100 ENROLL b
worker (i, b)

◮ If one worker exits, does this stop the others from
synchronising on b?

◮ No – when a process in a PAR ... ENROLL block
exits, it is automatically resigned from the barrier
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Multiple barriers

◮ You can enroll processes upon multiple barriers
within the same PAR construct:

BARRIER long, short:
PAR ENROLL long, short

PAR
long.timer (long)
short.timer (short)

BARRIER internal:
PAR ENROLL long, short, internal:
process.a (long, short, internal)
process.b (long, short, internal)
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Ph-Ph-Ph-Ph-Phases

◮ One use for barriers is to implement phased access

◮ Suppose you have some shared resource that
several processes have access to, but cannot be
used safely in parallel

◮ You could use semaphores, but they don’t guarantee
fairness

◮ You really want the processes to take turns
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Phase Two

◮ Give all the processes a barrier to synchronise on

◮ Divide your work up into phases – in phase 1, one
process uses the resource; in phase 2, another does;
and so forth

◮ At the end of each phase, everyone syncs on the
barrier
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Phase Three

◮ A particularly useful instance of this pattern:

◮ Lots of processes share an array; each needs to
update its cell, and examine some of the others

◮ You can read safely in parallel, but can’t mix reads
and writes

◮ Have two phases
◮ Phase 1: everybody reads the array
◮ Phase 2: everybody updates only their cell

◮ You can implement a cellular automaton this way
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Lazy Phases

◮ To make this more efficient, use resignation

◮ When a cell isn’t changing, have it resign from the
barrier and go to sleep

◮ When propagating changes around, wake up any
sleeping cells

◮ This means you only recalculate the areas that are
changing

◮ For more details, see CPA2005 paper!
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Mobile barriers

◮ How do you pass a barrier to a FORKed process?
◮ (since normal barriers can’t be communicated)

◮ You need a MOBILE BARRIER

◮ These have distinctly odd semantics
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Using mobile barriers

◮ Like any MOBILE, you must allocate it before use:

INITIAL MOBILE BARRIER mb IS
MOBILE BARRIER:

◮ If you hold a MOBILE BARRIER, you’re enrolled on it

◮ When you lose a reference to a barrier (if it goes out
of scope, or you assign over it), you resign from it
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Cloning mobile barriers

◮ When you CLONE one, you get another reference to
the same barrier

mc := CLONE mb

◮ Now mc is an alias for mb – this is bad!

◮ Imagine you had a process that took two barrier
arguments; you could now give it the same barrier
twice (which occam-π normally wouldn’t let you do)

◮ Generally you only use this when you’re FORKing a
process off

FORK worker (CLONE mb)

occam 1.04159. . . – p.98/124



Barriers summary

◮ Generalise channel synchronisation to any number of
processes

◮ Can use phases to control access to shared
resources

◮ Resignation allows processes to sleep while they’re
not interested

◮ We’re still finding uses for barriers!
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Exercise 5

◮ Please download:
http://occam-pi.org/picourse/q5.occ

◮ Compile and run it – note how the rowers get out of
sync fairly quickly

◮ Make it use barriers so they all row together
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User-defined operators
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Motivation

DATA TYPE COORD
RECORD

REAL32 x, y:
:

◮ Suppose you’ve defined a coordinate data type

◮ In occam 2, saying x + y would produce an error
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User-defined operators

DATA TYPE COORD
RECORD

REAL32 x, y:
:

◮ In occam-π, you can define what the + operator
means for that data type:

COORD FUNCTION "+" (VAL COORD a, b) IS
[a[x] + b[x], a[y] + b[y]]:

◮ This is a user-defined operator
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Number, please?

COORD FUNCTION "+" (VAL COORD a, b) IS
[a[x] + b[x], a[y] + b[y]]:

◮ Like a normal function definition, but with the
operator in quotes in place of the function name

◮ Any operator works:
+ - / * PLUS MINUS \/ /\ . . .

◮ Dyadic operators (as above) have two args; monadic
operators have one

◮ You can define multiple "+" operators for different
types. . .

◮ . . . even regular occam types (like INT or [4]BOOL)!

◮ There’s clearly some deep magic going on here
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Overloading

◮ This is overloading on argument types – like in C++
or Java

FOO FUNCTION "+" (VAL FOO a, b) IS ... :
BAR FUNCTION "+" (VAL BAR a, b) IS ... :
BAZ FUNCTION "+" (VAL BAZ a, b) IS ... :

◮ When you use an operator, the compiler will look at
the types of the arguments to decide which version to
use

◮ Later definitions override earlier ones

◮ You can’t do the same with regular PROC or
FUNCTION arguments (at least yet)
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Here be dragons

◮ Many people think operator overloading is a bad idea

◮ What looks like a simple operation might actually be
doing some big expensive calculation

◮ It’s easy to be deliberately perverse:

INT FUNCTION "+" (VAL INT a, b) IS a - b:

ASSERT ((4 + 3) = 1)

◮ And why are 4 and 3 there INTs and not, say,
BYTEs? There are special rules for literals and
UDOs. . .

◮ Tread very carefully when using this!
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Exercise 6

◮ Please download:
http://occam-pi.org/picourse/q6.occ

◮ Implement + and * for COMPLEX

◮ Remember * as a string literal is "**"
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Protocol inheritance
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Motivation

◮ In OO design, objects have interfaces with methods

◮ When we want to add new functionality, we extend
the interface with more methods

◮ In process-oriented design, process communicate
using protocols

◮ To add new functionality, we extend existing protocols
with new messages
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Syntax

PROTOCOL A
CASE

foo; INT
bar

:
PROTOCOL B EXTENDS A
CASE

baz
:

◮ The B protocol now has foo, bar and baz variants

◮ (KRoC limitation: A and B must be declared in the
same source file)
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And the point of this is. . .

PROTOCOL B EXTENDS A ... :
PROC sends.a (CHAN A out!) ... :
PROC reads.b (CHAN B in?) ... :
CHAN B c:
PAR
sends.a (c!)
reads.b (c?)

◮ A process that outputs using A can be connected to a
channel carrying B

◮ No need to change sends.a when we extend the A
protocol
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Multiple inheritance

◮ You can extend multiple protocols:

PROTOCOL MANY EXTENDS ONE, TWO:

◮ Doing this means you pick up all the variants from
ONE and TWO

◮ Variants with the same name must have the same
structure

◮ . . . but might not necessarily have the same meaning!

◮ This is isomorphic to OO multiple inheritance – which
is generally considered a really bad idea; be cautious
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Protocol inheritance summary

◮ You can extend an existing protocol with new variants

◮ Processes writing to channels of the old protocol can
write to channels of the extended protocol
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Exercise 7

◮ Please download:
http://occam-pi.org/picourse/q7.occ

◮ We have some clients and an FM/MW radio

◮ . . . but we’ve just bought a shiny new radio with DAB

◮ Make the radio support DAB via a new protocol that
extends TUNER

◮ . . . without changing the client code
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Writing real programs
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Libraries

◮ So now you know the language. . .

◮ What else do you need for a real occam-π
application?

◮ Libraries!

◮ I’ll go through some of the useful ones. . .

◮ It’s a mess – we’ll tidy it up in the near future
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Using libraries

◮ Include the appropriate headers and #USE the .lib:

#INCLUDE "consts.inc"
#USE "course.lib"

◮ Link with -llibname (and other libraries as
required)

kroc my.occ -lcourse

◮ This should all be in the OccamDoc. . .
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IO

◮ occam 2 programs had hostio, hostsp, etc.

◮ These days we don’t normally use those – mostly
because everybody’s used to using the course
library. . .

◮ out.int etc. are in the course library

◮ filelib contains various POSIX bindings
◮ In particular, file.get.options, a
getopt-style option parser; please use it instead
of ask.int when getting parameters
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Networking

◮ socklib has most of the standard POSIX
networking stuff

◮ The occam web server’s built on this

◮ For transparently-networked occam-π applications,
there’s pony: network channels that behave like
regular occam channels

◮ See Mario’s thesis
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Multimedia

◮ sdlraster provides trivial 2D bitmap graphics

◮ Adam’s got a 2D vector graphics package, and audio
output bindings

◮ Damian’s OpenGL bindings do accelerated 3D

◮ Carl’s video library handles various media types and
video IO
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Doing your own bindings

◮ There are several ways of binding to C code from
occam-π

◮ The “old” FFI interface – simple, a bit awkward to use

◮ Damian’s SWIG patches – automatically generate
bindings from C headers

◮ CIF – occam-like concurrency and channel
communications in C

◮ Plenty of examples around if you’re interested
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OccamDoc

◮ Standard for inline documentation – like JavaDoc

◮ See the Wiki for the syntax; it’s pretty obvious

--* Launch the nuclear missiles
PROC launch.missiles () ... :

◮ The occamdoc program converts these to HTML (via
XML and XSLT, so other formats also doable)

occamdoc -d outputdir *.occ *.inc

◮ Some libraries have OccamDoc markup already

occam 1.04159. . . – p.122/124



Exercise 8

◮ Please download:
http://occam-pi.org/picourse/q8.occ

◮ Draw some pretty graphics!

◮ For example, “munching squares”:

clear the screen
for each T from 0 .. (width - 1)

for each X from 0 .. (width - 1)
plot the point (X, X xor T)

draw the screen
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That’s all, folks!
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