
4.2. Focused pseudocoding of some FIFOs

4.2 Focused pseudocoding of some FIFOs
The first examples will be of focused pseudocoding. This is very close to real
occam programming, and is usually used to design low-level hardware or
something very close to it. The idea is to imply a fully detailed state machine as
a specification. Later implementations may not greatly resemble the pseudocode,
since they can use combinatorial as well as sequential hardware design, but
they are required to perform exactly as the pseudocode implies.

The example here is a common component of basic hardware: a First-In
First-Out (FIFO) bu�er. This is the same as a queue. In it, up to a certain
capacity, packets can be stored and later output in the order of their reception.
Contrast it with a stack, or Last-In First-Out (LIFO) bu�er.

The size of a packet is usually fixed, but can be any value. Even one-
bit packets can be queued in a “shift register.” A shift register is usually
synchronous, meaning every member of the queue moves one slot upon a clock
signal. That, however, is too inflexible for most queue uses with packets of one
byte or bigger. Usually an asynchronous design is desired, where the packet
input and the packet output are under independent external timing controls.

4.2.1 Simple FIFO
The simplest asynchronous FIFO design is rawFIFO, a PAR of n identical
members, specified in Table 4.1.

When considering the design of rawFIFO, remember the definition of a
PAR in Chapter 3. The execution of members of the PAR can be ordered
in any way that is consistent with points of synchronization (that is here
communication on a channel). This includes interleaving, sequence, or true
parallel.

In focused hardware pseudocoding, internal channels as well as programming
and internal (local) variables are a convenience serving to define the device’s
behavior from the point of view of the outside world. Also usually convenient
is a presumption that internal activity is “fast” compared with interactions
with the outside world. These two considerations lead to the definition of a
stable state as a state that cannot change as long as the part of it that is
shared with the outside world does not change.

Now rawFIFO (with n=5) can be visualized as Figure 4.1, with the external
channels in and out connecting to buffer.d[4] and buffer.d[0] respectively.
(Here remember period in occam, like underscore in C, is part of names; and I
am using buffer.d[k] to refer to that instance of PROC buffer that is called

111



4. Second Wave

-- This is a raw FIFO implemented in occam-like Crawl Space
-- pseudocode. It is the raw or theoretical FIFO of n parallel
-- buffers, each storing one PACKET and passing it on as soon as
-- possible. An actual implementation of a FIFO using this approach
-- is usually not practical, since it passes each packet a large
-- number of times internally, and a circular indexing system as in
-- "FIFO.occ" is preferred. However, this is the defining standard
-- against which any FIFO implementation (software or hardware) is
-- judged.
-- Global resources are:
-- CHAN OF PACKET in : for the input to the FIFO
-- CHAN OF PACKET out : for the output from the FIFO
-- The size of the FIFO is defined below. (The structure assumes
-- n >= 2.)
VAL INT n IS 32 :
VAL INT nm1 IS n - 1 :
VAL INT nm2 IS n - 2 :
-- this buffer code is repeated n times in parallel
PROC buffer(CHAN OF PACKET enterch, exitch, PACKET pkt)

WHILE TRUE
SEQ

enterch ? pkt
exitch ! pkt

:
-- this is the main program and its local resources
[n]PACKET pktall : -- for clarity; these could be local to the buffers
[nm1]CHAN OF PACKET ch : -- ch[n-1]=in and ch[-1]=out, conceptually
PAR

buffer(ch[0], out, pktall[0])
PAR i FROM 1 FOR nm2

buffer(ch[i], ch[i-1], pktall[i])
buffer(in, ch[nm2], pktall[nm1])

--END PAR
}}}

Table 4.1: Toplevel view of rawFIFO.occ in origami (irrelevant comments
removed)

112



4.2. Focused pseudocoding of some FIFOs

Figure 4.1: rawFIFO (n = 5)

with pktall[k].) All the links operate only in one direction, which means that
information is transmitted “backwards” (toward in) only by blocking.

Since this is a FIFO that is being designed, internal FIFOs in the channels
would be superfluous. An output transmission (!) by buffer.d[k] is there-
fore simultaneous with an input reception (?) by buffer.d[k-1] to its right.
Branching, looping and communicating are clearly not stable states, since they
proceed to completion. Therefore the only stable state candidates for each
member of the PAR are just before the input and just before the output, which
can be points of blocking. They will be denoted ? and ! respectively, resulting
in an n-letter word made of these characters.

It is immediately obvious that !? anywhere in this word is not stable, since
a communication can and will begin immediately. Therefore all the ! must be
to the right of all the ?. It follows that the only stable states are denoted by
the count of ! (waits on output):

????? 0
????! 1
???!! 2
??!!! 3
?!!!! 4
!!!!! 5

Closer examination shows that each member of the PAR begins at an input,
so that stable state 0 is the initial state. An internal packet communication
means a !? changes to a ?! in the word, but a packet coming in on in causes
the leftmost ? to change to !, and a packet leaving on out causes the rightmost
! to change to ?. Therefore the first state change from stable state 0 has to be
a packet input on in.

113



4. Second Wave

Figure 4.2: Unstable after in

Figure 4.3: Unstable after out

The key insight is that information flows to the right. Therefore even though
after !? changes to ?! the packet still remains in the left member (it’s a copy
not a move), it can be treated as a move, and the left copy of the packet can
be ignored. It will be overwritten as soon as new information enters from in.
A member’s bu�er is full if it has received data that it has not re-transmitted,
and empty if either it has never received data, or if the data it currently
contains has been re-transmitted. This means that (whether stable or unstable)
! always means full, and ? always means empty.

Figure 4.2 is an unstable state with two packets ready to output, and a new
packet just input. It corresponds to !??!!. Figure 4.3 is an unstable state that
came from a stable state of three packets queued, but the rightmost packet
was just output. It corresponds to ??!!?. It is easy to see how these will “fix”
themselves (if they are given time) and reach the stable states ??!!! and ???!!
respectively.

Inspection shows that, if the code is strictly followed, Figure 4.4 cannot
happen. The transmission from [2] to [1] cannot be at the same time as that
from [1] to [0], because of the sequence in [1]. If PROC buffer were made into a

114



4.2. Focused pseudocoding of some FIFOs

Figure 4.4: Simultaneous move ?

loop on PAR, that would not solve this problem, since the shared bu�er would
be illegal. And yet it seems that the simultaneous communications would be
the most time-e�cient way to do the move.

Not quite. The communication into [1] must lag a little behind that out of
[1], otherwise the value transmitted out will be uncertain. Careful hardware
can make this lag much less than a packet, thus improving on the e�ciency of
the strict occam rawFIFO. Given that the pseudocode is intended to define the
function of the FIFO (its behavior to the outside world), this is perfectly OK.

4.2.2 Circular indexed FIFO
In any case, there is an ine�ciency with rawFIFO, in that every packet must
be transmitted n-1 times internally. One can imagine the FIFO as a circular
bu�er, with rotating input and output access, where input can fire whenever
the bu�er is not full and output can fire whenever it is not empty. “Rotating
input and output access” can be modeled by two indices. But the necessary
race presents a di�culty. It would be most simply represented by an ALT
on both input and output. And, like the occam language, I have settled on
input-only ALTs.

Why? The reason is that for a pure CSP communication, both sides have to
act independently, not under control of an all-knowing supervisor. That is crit-
ical to the goal of simplifying design by dividing it into multiple independently
maintained entities. Therefore, to avoid an infinite regress, that means one side
of each communication has to commit unconditionally to communicating. In
the occam tradition, it is the output side.

This is actually expressed in Transputer design. At one point I said that
Transputer occam communication is almost unbu�ered. This is because when
two Transputers are connected by a wired link, the outputting side always

115



4. Second Wave

-- This is a FIFO implemented in occam-like Crawl Space pseudocode.
-- On a fast system it is equivalent to n parallel buffers, each
-- storing one PACKET and passing it on as soon as possible.
-- Global resources are:
-- CHAN OF PACKET in : for the input to the FIFO
-- CHAN OF PACKET out : for the output from the FIFO
-- The size of the FIFO is defined below.
VAL INT n IS 32 :
... PROC shelf(CHAN OF PACKET out, fromstore, CHAN OF BOOL need, PACKET pkt)
... PROC store(CHAN OF PACKET in, toshelf, CHAN OF BOOL need, []PACKET pkt)
... main program with local resources
}}}

Table 4.2: Toplevel view of FIFO.occ in origami (irrelevant comments removed)

starts the communication by sending one byte across the link. That byte is
committed, though if the receiver never sends an ACK, then the communication
is deemed not to be complete. There can be an ALT on the receiving side, and
the link may not be the winner. Every point-to-point communication between
independent hardware entities must deal with this problem in a similar way.

It would be possible to reverse this, and have the receiver send a REQ
before the transmitter sends a byte, but you cannot have it both ways on the
same communication. It would even be possible to have a FIFO that did ACK-
type communication on its input end and REQ-type communication on its
output end, and then the input and output ALT FIFO would be possible. But
this has strange and nonstandard implications, and we can save the standard
communication order with a special member of the PAR. Table 4.2 shows the
solution.

In FIFO, the storage is divided into a one-packet shelf and an n-1-packet
store. Here, shelf corresponds to pktall[0] in rawFIFO, the bu�er just
before the external output channel. The circular bu�er store corresponds to
all the other storage in rawFIFO. And a new, upstream internal channel is
added, through which shelf can send an event (a timing-only communication,
here represented by a BOOL) to store. The analogy is to a retail shelf and a
backroom store.

Table 4.3 shows the programming of shelf. It is like buffer in rawFIFO
except that, before inputting a new packet, it sends its ready signal to the
upstream member. This allows the upstream member to handle the circular
bu�er with an input-only ALT.

Table 4.4 shows the coding for a circular bu�er. Indexing takes the place of
the internal communications of rawFIFO. Here a feature of the ALT implemen-

116



4.2. Focused pseudocoding of some FIFOs

{{{ PROC shelf(CHAN OF PACKET out, fromstore, CHAN OF BOOL need, PACKET pkt)
PROC shelf(CHAN OF PACKET out, fromstore, CHAN OF BOOL need, PACKET pkt)

WHILE TRUE
SEQ

-- When waiting on following instruction, shelf is EMPTY.
need ! TRUE -- Because of the nature of the code of PROC store,
fromstore ? pkt -- this input communication NEVER blocks.
-- When waiting on following instruction, shelf is FULL.
out ! pkt

:
}}}

Table 4.3: First fold view in origami

tation in [2] is of great importance. If shelf reaches the communication on
channel need first, it must clearly block waiting for store to execute an ALT
in which need wins. But if store gets there first, then shelf still has to block,
because control has to go back to store to disable (adjudicate) the ALT and
declare need the winner. Therefore, in every case, the first thing to happen
after the event is that store will run its code to the point of outputting on
toshelf. It must there block, because shelf hasn’t had a chance to run yet,
and shelf will then run and do the input on fromstore without having to
wait. And even though store has to block momentarily while shelf is doing
this, shelf will quickly run to block at output either on out or on need, and
store will run back to the ALT.

Therefore the only possibilities for stable states in shelf are at the outputs,
not the input. And the only possibility for a stable state in store is at the ALT.
The state where shelf is at the output on need and store has fl > 0 is not
stable because the ALT will immediately fire and a packet will be transmitted
to shelf. Therefore shelf can be waiting at either need or out if fl = 0 but
must be waiting at out if fl > 0. These correspond to queue length 0, 1, and
fl+1, respectively.

Both shelf and store above are PROCs, exactly like void functions in
C, and they must be called, their formals filled in, in a calling program (like
main). Table 4.5 shows this. Each packet is communicated three times: input
on in, internally on passer, and output on out. The upstream communication
on need is done with a minimum of data transmission, and since the value of
its BOOL is never checked, can be implemented by a timing-only event.

117



4. Second Wave

{{{ PROC store(CHAN OF PACKET in, toshelf, CHAN OF BOOL need, []PACKET pkt)
PROC store(CHAN OF PACKET in, toshelf, CHAN OF BOOL need, []PACKET pkt)

VAL INT nm1 IS n - 1:
VAL INT nm2 IS n - 2:
INT fl, indin, indout :
BOOL ready :
SEQ

indin := 0 -- input index
indout := 0 -- output index
fl := 0 -- number of packets (starts empty)
WHILE TRUE

PRI ALT
-- If there is stuff in store, stocking the shelf takes priority
(fl > 0) & need ? ready

SEQ
toshelf ! pkt[indout]
IF

indout < nm2
indout := indout + 1

TRUE
indout := 0

fl := fl - 1
-- If the store is not full, new packets are input.
-- Starvation of this line is not possible because output will
-- soon lead to fl = 0, which deactivates the top alternative.
(fl < nm1) & in ? pkt[indin]

SEQ
IF

indin < nm2
indin := indin + 1

TRUE
indin := 0

fl := fl + 1
:
}}}

Table 4.4: Second fold view in origami

118



4.2. Focused pseudocoding of some FIFOs

{{{ main program with local resources
[n]PACKET pktall :
CHAN OF PACKET passer :
CHAN OF BOOL need :
PAR

store(in, passer, need, [pktall FROM 1 FOR n-1])
shelf(out, passer, need, pktall[0])

--END PAR
}}}

Table 4.5: Third fold view in origami

Time Initial resources and data

Initialization

Input Output

Resource Channels Channels Resource

ownership ownership

and data and data

Termination

Final resources and data?

-

?

?

-

Figure 4.5: Box data and resource flow over time (strictly enforced)

4.2.3 Startup, shutdown, and nesting
Both programs described above are somewhat fragmentary, because they omit
details of startup and shutdown. See Figure 4.5, which was taken from [1].

The structure both of rawFIFO.occ and FIFO.occ consists of some initial-
ization, followed by outer PARs with members ending in a WHILE TRUE loop.
This is like the “setup” and “loop” approach found in many embedded IDEs
like Arduino and its variants.

119



4. Second Wave

It begs the question of shutdown completely, since a WHILE TRUE loop
means “go on for all eternity.” It really means “go on until an uncontrolled
failure like a power-o�.” So strictly speaking, it is an invalid code design. What
it really means is “the output of this code will cease to matter before hardware
failure causes its behavior to become undefined.” In many simple embedded uses
this is OK, as long as everyone is aware of it. In the focused hardware design
case, there will actually have to be some work done beyond this pseudocode to
make sure the FIFO quits gracefully.

The code, as we have noted above, implies that there are data bu�ers but
no valid packet data at startup. However, there are other things to note. In
both programs, n is defined but the external channels are not. This would
normally mean they are passed in by a PROC definition embracing all the
code, or by nested PARs. The reason the outer code has to be PARs is that
this code has to be the last to be executed in its sequence, if there is a sequence.
Otherwise the WHILE TRUE, which never terminates, will make the following
code inaccessible and definitely incorrect. What this means is that the FIFO is
outermost with respect to Deep nesting, which is just what you would expect,
since it is hardware or emulates hardware.

Given this PAR structure embracing our FIFO code, with in and out
declared in some outdented high place, another interesting possibility follows.
The kind of thing shown in Table 3.1 of Chapter 3 is possible, with the clients
using the FIFO. Since it outlives these clients, there is nothing in the WHILE
TRUE loop to stop its being nonempty between clients. This is a consequence
of a lack of proper shutdown that is an actual problem using bu�ered IO such
as serial. If a running program is deaf to the keyboard bu�er, for example, you
can actually type in another command during its run, and that will flash on
the screen and be executed right after the old program ends.

When doing data-flow (higher level) pseudocode, it will pay to consider
shutdown. In occam, a Boolean “notdone” variable may be turned o� by
anything capable of interrupting the program, which not only loops on WHILE
notdone, but all significant actions are enclosed by an IF test checking this
variable. Then you actually have to design to the time pad o�ered by your
Uninterruptible Power Supply (UPS) and provide a graceful shutdown at each
point.

120


