

OpenComRTOS
Layer L0

A next generation distributed and scalable RTOS supporting a coherent and unified system

development methodology, based on Interacting Entities

WP1 Architecture and design
Version: 1.0.13

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 2 of 60

Review list
Name Organization

Eric Verhulst Open License Society
Gjalt de Jong Open License Society

Signature list

Name Signature Date

Document History

Date Version Author Change

30.09.2005 1.0.0 Valeriy Kamyshniy
06.10.2005 1.0.1 Valeriy Kamyshniy REVIEW iteration 1
11.10.2005 1.0.2 Valeriy Kamyshniy REVIEW iteration 2
12.10.2005 1.0.3 Valeriy Kamyshniy REVIEW iteration 2
01.11.2005 1.0.4 Valeriy Kamsyhniy Functional Design additions

11.11.2005 1.0.5
Eric Verhulst
Gjalt de Jong

Rewrite

15.11.2005 1.0.6 Gjalt de Jong Updated diagrams
16.11.2005 1.0.7 Eric Verhulst Clean up
23.11.2005 1.0.10 Gjalt de Jong Added Task management services
11.01.2006 1.0.11 Eric Verhulst Update
23.01.2006 1.0.12 Eric Verhulst Update from working meetings
21.02.2006 1.0.13 Gjalt de Jong Updated diagrams (synchronous services only)

Release information

Version 1.0.13 is the first stable release in line with the actual software. It covers only the single phase
services (L0_XXX_W) although some elements of the two-phase services are mentioned in view of future
kernel releases.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 3 of 60

Table of Contents

1. Introduction .. 5
1.1. Purpose...5
1.2. Scope..5
1.3. Definitions, Acronyms and Abbreviations..5
1.4. References..6

2. General concepts ... 7
2.1. Background of OpenComRTOS..7
2.2. Physical structure of target computation system...7
2.3. Layered architecture of OpenComRTOS ..8
2.4. Logical view of Layer 0..9

2.4.1. Principle of synchronization and communication..9
2.4.2. Scheduling Tasks and Task synchronisation/communication through the RTOS
kernel..10

2.5. Inter-Task interaction ..11
2.6. Inter-Node interaction..13

3. Functional Design of Layer 0.. 15
3.1. Task interactions...16

3.1.1. Logical view of a Task ..16
3.1.2. Logical view of Packets ..17
3.1.3. Logical view of Ports...18
3.1.4. Logical view of the Packet Pool ..19

3.2. Inter-node interactions ..19
3.2.1. Logical view of Link Drivers and inter-node interactions...................................19
3.2.2. Logical view of the Router ..21

3.3. Multi-tasking..21
3.3.1. Definition of multi-tasking ...21
3.3.2. Logical view of the Context Switch ...21
3.3.3. Logical view of the Kernel...22
3.3.4. Logical view of the L0 Scheduler ..27

4. Design view of Layer 0 ... 28
4.1. Predefined constants ..28
4.2. Data types...28

4.2.1. BYTE ..28
4.2.2. INT16..28
4.2.3. INT32..28
4.2.4. UINT16 ...28
4.2.5. UINT32 ...28
4.2.6. BOOL ...28
4.2.7. EntityAddress ...28

4.2.7.1 TaskID...28
4.2.7.2 PortID..29

4.2.8. L0_Prio ...29
4.2.9. L0_Timeout...29
4.2.10. L0_ListElement...29
4.2.11. L0_PrioListElement ..29
4.2.12. L0_List..29
4.2.13. L0_PrioList..30
4.2.14. L0_TaskArguments ..30

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 4 of 60

4.2.15. L0_TaskFunction ..30
4.2.16. L0_Status ...30
4.2.17. L0_ServiceID..30

4.3. The design view of a Task ..31
4.4. The design view of a Packet ...31
4.5. The design view of a Port..32

5. Procedures and algorithms .. 34
5.1. Kernel API calls...34

5.1.1. L0_Status L0_StartTask_W (TaskID) ...34
5.1.2. L0_Status L0_StopTask_W (TaskID) ...36
5.1.3. L0_Status L0_SuspendTask_W (TaskID) ..38
5.1.4. L0_Status L0_ResumeTask_W (TaskID) ...40
5.1.5. L0_Status L0_AllocatePacket _{NW|W|WT } (L0_Packet *Packet, [L0_Timeout
Timeout]) ..42
5.1.6. void L0_DeallocatePacket_W(L0_Packet Packet)...42
5.1.7. L0_Status L0_SendPacket_{NW|W|WT } (L0_PortID Port, L0_Packet Packet,
[L0_Timeout Timeout]) ..43
5.1.8. L0_Status L0_ReceivePacket_{NW|W|WT } (L0_PortID Port,
L0_Packet Packet, [L0_Timeout Timeout])..44
5.1.9. void L0_SendPacket_Async (L0_Port Port, L0_Packet Packet).......................45
5.1.10. void L0_ReceivePacket_Async (L0_Port Port, L0_Packet Packet)45
5.1.11. L0_Status L0_WaitForPacket__{NW|W|WT } (L0_PortID Port, L0_Packet,
L0_Timeout Timeout) ..46

5.2. Function called internally by the API services in the context of the calling Task47
5.2.1. void L0_InsertPacketInKernel (L0_Packet) ...47

5.3. Kernel Internal API calls..49
5.3.1. void L0_KernelLoop (void)..49
5.3.2. void L0_AllocatePacketService(L0_Packet Packet)51
5.3.3. void L0_DeallocatePacketService(L0_Packet Packet)52
5.3.4. void L0_SendPacketService(L0_Packet Packet)..54
5.3.5. void L0_ReceivePacketService(L0_Packet Packet)55
5.3.6. void L0_ReturnPacketService(L0_Packet Packet) ...55
5.3.7. void L0_SynchronizePackets (L0_Packet SendRequestPacket, L0_Packet
ReceiveRequestPacket) ...56
5.3.8. void L0_MakeTaskReady(L0_TaskControlRecord Task)58
5.3.9. void L0_Reschedule (L0_TaskControlRecord Task) ..59

5.4. Implementation notes..59

6. Issues .. 60

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 5 of 60

1. Introduction

1.1. Purpose
This document describes the architecture and design of Layer L0 (further called L0) of OpenComRTOS. It
considers possible alternative solutions, argues the chosen approach and explains the involved trade-offs.
The ultimate goal of this document is to provide information that is sufficient for modeling and implementing
L0.

1.2. Scope
This document is being developed in a number of iterations, gradually increasing the level of details in the
OpenComRTOS L0 architectural description. The current iteration of the design is indicated by the last
position (xx) in the document version, e.g. 1.0.xx.

The design decisions in this document are based on the requirements for the OpenComRTOS specified in
[1].

1.3. Definitions, Acronyms and Abbreviations

Cluster An ensemble of Nodes

Context switch
The process of swapping Task-specific information usually associated with
CPU registers during Task scheduling

Inter-node link
Point to point communication system between two nodes. It can be virtualised
when the communication medium is shared.

Flood-fill booting
Booting strategy whereby every booted Node activates the booting of Nodes
immediately connected with it with the same boot code

Group booting Booting strategy whereby a selected group of Nodes is booted
HAL Hardware Abstraction Layer
PAL Platform Abstraction Layer
Hub Access point in a network to a local cluster of Nodes

Interrupt latency
The time interval between the hardware interrupt signal and the first
application level instruction of the interrupt service routine entry

Interrupt-to-task
latency

The time interval between an interrupt service routine entry and the first
application level instruction of an associated Task

ISR Interrupt Service Routine

Network booting
Process whereby a network of processors is booted through the network
connections

Node
A processing device in a network containing at least a CPU and its local
memory

Orthogonal Independent, non-overlapping
Packet TBD

TCB
Task Control Block – data structure which is used by operating system to
manage individual Task

Platform Hardware system with CPU, specific peripherals and development support

Port
A L0 level kernel object used to synchronise and communicate between Tasks
using Packets

Round Robin
scheduling

Non-pre-emptive scheduling following a policy of “first come – first served”.
Attention: often Round Robin means pre-emptive time slicing scheduling –
this notion is not used in this document

RTOS Real-time Operating System
Site An ensemble of Clusters

System object
Operating system specific object required for Task management and
communication (e.g. mutexes, queues)

Task Active RTOS object: a function with its private workspace
(binary) image The binary code that is booted
De-scheduling Releasing the CPU to another Task
Re-scheduling Process of scheduling a Task that was active but not running

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 6 of 60

1.4. References
1. OpenComRTOS: Requirements specifications, Open License Society vzw, 2005.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 7 of 60

2. General concepts

2.1. Background of OpenComRTOS
The main purpose of OpenComRTOS is to provide a software runtime environment supporting a coherent
and unified systems development methodology, based on Communicating Objects, more generally called
“Interacting Entities”.

In OpenComRTOS a communicating object is represented by a running SW entity, called a “Task”.

A Task is running on a computing device (CPU + RAM + Peripherals + etc.), called a “Node”.

There may be many Tasks that run on a single Node. These Tasks may be independent or synchronising
and communicating with each other. In other words, it is possible to build a network of communicating
Entities using only one Node, every Task virtualising a complete CPU instance.

OpenComRTOS however is a distributed RTOS and contains a build-in router and communication layer.
While hidden from the application programmer, this allows Tasks to synchronise and communicate
transparently across a network of processing nodes. This support for a transparent distributed operation
however is an option that does not prevent using OpenComRTOS on a single CPU.

For the application programmer, there is no logical difference between Tasks running on the same Node or
on multiple Nodes. He programs in a network topology independent and transparent way, except when
physical differences dictate otherwise.

2.2. Physical structure of target computation system
The following figure represents the physical structure of a generic and distributed computing system from the
point of view of OpenComRTOS:

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 8 of 60

Node 1 Node 2 (hub)

Node 3

Node 4 (hub)

Node 7 (hub)

Node 5

Node 6

Node 8 (hub) Node 9

Cluster 1 Cluster 2

Site 1

Site 2

Site 3

Node 11

(hub)

Cluster 1

Node 10

Cluster 2

Node 12
Node 13

(hub)

Figure 1 Generic structure of a distributed computing system

A target system is hierarchically composed of the following three layers:

• Sites, consisting of

• Clusters, consisting of

• Nodes, hosting

• Entities (e.g. Tasks, Ports, …)

The Nodes communicate with each other via various physical channels (IO buses, networks, IO channels,
etc). There are special Nodes that fulfil the role of communication hubs providing communication between
different clusters in the network. Note that these three layers will often correspond with three domains where
the physical parameters of the communication layer will differ in performance, bandwidth and communication
latency. Form a logical point of view however there is no difference at the application level. Only timing will
differ.

2.3. Layered architecture of OpenComRTOS
OpenComRTOS is being developed using a scalable architecture. Each higher level layer builds on the
lower layers and provides a specific support:

• L0. The lowest layer. Provides the basic primitives services, such as task scheduling, task
synchronisation and communication, routing and inter-Node communication.

• L1. The next layer. Will most often provide more complex and flexible services and can be used to
emulate existing third party RTOS

• L2. The highest layer. This layer can support user-defined services, often supporting dynamic
behaviour.

OpenComRTOS operates at the L0 layer by using Ports and Packets. The Ports are used to exchange
Packets between Tasks and synchronise a send-receive pair of services. The L0-Packets are atomic units

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 9 of 60

containing a header and a zone for payload data and the kernel mostly operates by shuffling the packets
around will updating or using the header field information. To implement L1 and L2 layer services additional
Packets of fixed size are used, most often just containing data payloads. In this document we focus on the
L0 layer only.

2.4. Logical view of Layer 0

The distributed environment, described in the Sections above is based on the existence of a fast and unified
communication layer. The OpenComRTOS Layer 0 therefore is defined as providing the following
functionalities:

1. a Packet-switched communication layer using InterNode Links and inter-node communication
Routers

2. a Kernel to provide functional services and operating resources to Tasks
3. a Task Scheduler to schedule the Tasks according to a real-time scheduling policy

The logical structure of OpenComRTOS on a single node is shown in Figure 2.

Node 1

Link 1

HW

Link 2

HW

Link N

HW

Task 1

Node 2

Kernel Task Scheduler

LinkRX 1

Node 3 Node 4

Router

Link Driver

HW ISR

Link Driver

HW ISR

Link Driver

HW ISR

LinkTX 1 LinkRX 2 LinkTX 2

Task 2
Task N

LinkRX N LinkTX N

Port 1
Port M

Figure 2. Logical structure of the distributed system

2.4.1. Principle of synchronization and communication

The distributed environment, described in Sections 2.1 and 2.2, is based on the existence of a fast and
unified communication layer, independent of the underlying communication protocol or hardware. In terms of
this communication layer, an abstraction of the physical inter-node communication channel is called by L0 a
Internode Link.

Each Node can have a number of Internode Links to other Nodes.
Logically, every Internode Link is a point-to-point connection to another Node. It consists of a transmitting
and receiving channel, called LinkTX and LinkRX respectively. Self-loops are allowed as well as multiple

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 10 of 60

Links between the Nodes. If there are no links, e.g. when there is only one Node in the system, the routing
function is void and the system works in an identical way.

Tasks interact with the Internode Links via a standardized interface. The interaction to the related hardware
is hardware specific and should not influence the interface.

OpenComRTOS is based on Packet-switched communication. This means that Packets of a fixed size are
passed from one Task to another Task. As the Communicating Tasks may be located on different Nodes,
the Packet may be passed from one Node to another. Coming from a source Node to a destination Node,
the Packets may pass through a number of intermediate Nodes. For the application programmer however,
Packets are sent to a “Port” object and received from a Port object. This effectively isolates Tasks from
each other and increases the scalability of the system. At the higher levels of OpenComRTOS (L1 and L2),
Ports and Packets might be invisible to the developer and encapsulated in the services provided.

To provide the routing of Packets from Node to Node, there are inter-node communication Routers in the
distributed network.
The Router is a function present on every Node. This function provides a mapping between destination
Nodes and Internode Links to be used by OpenComRTOS to reach the destination Node. The router itself
is invisible to the application programmer. As all OpenComRTOS services are by default “distributed”, the
routing is void when routing between local Tasks.

2.4.2. Scheduling Tasks and Task synchronisation/communication through the RTOS kernel

To timely provide the Tasks with the required operating resources (RAM, CPU time, functional services,
etc.), OpenComRTOS has a Kernel and a Task scheduler.

The Kernel is the logical entity that i) provides services to the Tasks and ii) also schedules the Tasks
according to a real-time scheduling policy. Although the functions are logically separate, in practice they can
be intertwined in OpenComRTOS.

From the point of view of the functional relationships between the above mentioned entities, the software
runtime environment on a Node consists of:

• A Task scheduler that switches the CPU context between Tasks

• (One or more) Tasks that request services from the Kernel (using a Packet, but that may be
hidden)

• The Kernel that provides these services. When one of the Tasks is remote, it passes on
the service request to remote Nodes

• When remote services and Entities are involved, Routers are used for passing on the
Packets to Internode Links, respectively to receiving them from Internode Links

• Internode Links have Transmitting (LinkTX) and Receiving (LinkRX) logical channels

• LinkTX and LinkRX are provided by the Link hardware, managed by (hardware) specific
link drivers and interrupt service routines (Link driver, HW ISR)

The relations are represented in Figure 3.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 11 of 60

Kernel

Router

-

passes packets to

1

1

-

sends remote packets via
1

1
-

dispatches packets to
1

1..*1..*

1

-

provides services to

1

*

-

requests services from

*

1

Task

Task

Scheduler

LinkTXLinkRX

-

-

1

*

switches the context to

receives remote packets from

Figure 3. Functional relationship between entities of the distributed system

2.5. Inter-Task interaction
An inter-task interaction consists of two parts: sending and receiving a Packet via a Port. A typical scenario
consists of logical actions, performed in one cycle of Packet interchanges between two communicating
Tasks. When no data is interchanged (data size = zero), we call such an interchange of Packets
“synchronisation”. When data is exchanged as well, we call it communication. Note however, that at the level
of L0, this is an issue for the application code running in the Tasks. From a point of view of the Kernel and
the Port, just a Packet has been interchanged.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 12 of 60

receiving communication
(receiving Task)

sending communication
(sending Task)

allocate a Packet or use

a preallocated Packet

put data into Packet

send Packet

receive Packet

receive Packet from

Port

read data from Packet

de-allocate Packet

Port

send Packet to Port

Figure 4. Scenario of a Packet interchange cycle (with data)

In most cases the send request is performed by one Task while the receive request is performed by another
Task. However, as the interaction is through Ports, it can as well be that e.g. driver Tasks or hardware
specific ISRs put a Packet in a Port. However, while an ISR can insert a Packet into a Port on which a
driver task could wait to receive from, no ISR should attempt to receive a Packet from a Port. The reason is
that ISRs are not allowed to wait and polling is just burning cycles. If an ISR needs to receive data it should
get this data from an associated Driver Task that itself can wait to (asynchronously) receive from a Port.

As OpenComRTOS supports distributed systems, by default, the interacting Tasks and Ports can be
located on different Nodes. For example, the sending Task can be located on Node A, the receiving Task
can be located on Node B and the Port can be located on Node C (see the figure below for an example).

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 13 of 60

Figure 5. Possible distribution of Entities, involved into inter-task interaction.

2.6. Inter-Node interaction

OpenComRTOS provides topology independent interaction between tasks. All services, except when
dictated otherwise by hardware dependencies, are from the application’s task point of view independent of
the location in the network of nodes. This applies e.g. to Task management services as well as to Port
services. However, the layer of direct control of the Link HW may implement the communication very
differently from one platform to another.

While in OpenComRTOS, tasks can interface directly with the hardware via Interrupt Service Routines, most
often a (driver) Task will implement the higher level functionality of interfacing with the hardware. In
particular, when multiple nodes are present in the system, these nodes will be able to exchange data through
a dedicated software supported hardware mechanism. Independently of the hardware implementation, we
call these dedicated communication mechanisms LINKS. OpenComRTOS defines dedicated Tasks, called
Link Driver Tasks, that implements the OpenComRTOS system level communication protocol. Of course, in
general, hardware will be accessed through a combination of an ISR and a Driver Task, but then a
hardware and application specific protocol will be used.

A Link Driver Task is the only way to initiate transparent inter-node link communication

Any Link Driver Task communicates only to other Tasks via a dedicated Port associated with
it. This Port is called as a Task Input Port.

Any Task communicates with a Link Driver Task only via a dedicated Port associated with it.
This Port is called the Driver Input Port.

The HW itself is controlled and accessed by the ISR layer. This layer may communicate with
the Driver Tasks through shared memory and dedicated event signalling services.

The interaction scheme is illustrated in the following figure.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 14 of 60

Interacting Task

Driver Input Port

Task Input Port

Link Driver Task

HW ISR Layer

HW

Local

Port
Kernel Task

Kernel

Input Port

Figure 6. Interactions between HW, ISR Layer, Driver Task and application Tasks.

The Tasks, Link Driver Tasks and ISR layer interact with each other ONLY via the Kernel. See Section 2.4 /
Figure 3 and Chapter 3.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 15 of 60

3. Functional Design of Layer 0
The following figure represents the Functional model of OpenComRTOS Layer L0.

+L0_KernelLoop()

-L0_KernelPort

L0_Kernel_Task

+L0_SendPacket_W()

+L0_SendPacket_WT()

+L0_SendPacket_NW()

+L0_ReceivePacket_W()

+L0_ReceivePacket_WT()

+L0_ReceivePacket_NW()

+L0_SuspendTask_W()

+L0_ResumeTask_W()

+L0_StartTask_W()

+L0_StopTask_W()

-

L0 Kernel Services

+EntryPoint()

-RequestPacket

-Workspace

Task

+DriverEntryPoint()

Link Driver Task
HW ISR

-Interfaces with1

1

1

-Requests Services from *

+getPacket()

+releasePacket()

RxPacket Pool

1

-releases Packets from 1

*

-Raises

*

1

-Inserts Packets to Port of*

-Waiting List

Local Port

-Inserts Packets to Port of*

1

-L0_ReadyList

L0 Scheduler

*

-Makes Running1

+routeTaskCR()

-RoutingTable

L0_Router

1

-Gets Driver Input Port 1

*

-Makes Running

1

1

-Makes Running

1

HW Unit

-WaitingList

Driver Input Port

*

-Inserts Packets to 1

-WaitingList

Task Input Port

*

-Inserts Packets to

1

-Calls

1

1

1

-Inserts Packets to
1

-Requests Services from

1

1

Not USED for

single phase services

1 -releases Packets from11

-allocates Packets from

1

Figure 7. Functional model of OpenComRTOS

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 16 of 60

3.1. Task interactions

As defined in Section 2.4, a synchronisation/communication between the Entities is a
synchronisation/communication between the Tasks via intermediate Ports. To simplify the terminology, we
call these Task Interactions.

Ports are used as synchronisation Entities for the Packets sent and received by Tasks. Hence, Ports also
decouple Tasks when interacting and they can be located physically on different Nodes than the sending
and receiving Tasks. As a result, Tasks are isolated from each other while this mechanism is inherently
scalable and topology independent.

3.1.1. Logical view of a Task

In OpenComRTOS, the software runtime environment can run many Tasks on a single Node. Each Task is
a separate entity identified by its TaskID. The Task ID is a globally unique identifier in the distributed system.
A Task is therefore defined as:

• A Task is a uniquely identified operating resource

• A Task can issue service requests from the Kernel. These are implemented as a local
function within a Task’s workspace.

• The first instruction of a Task’s function is called the entry point of the Task.

The Task Context is defined by the following two parts:

• Its Workspace (often called Stack Space). This is an area of data memory that is involved in the
logic operation of the Task. Normally, the logical data of a Task context is hardware independent.
The logical data is an explicit part of the context that the Task manages itself and hence contains
only data and variables that are only visible to the task itself.

• Its CPU Context that is the physical context of the Node. This is a set of data units that precisely
defines the current state of the CPU. The CPU Context is an implicit part of the Task Context, not
directly manipulated by the Task, but by the compiler, CPU and peripherals. Usually the CPU
Context consists of the state of the essential CPU and other HW registers, like the Instruction
Pointer (IP), Stack Pointer (SP), the Accumulating Registers, and I/O registers. The CPU Context is
specific to the hardware (CPU + peripheral units, e.g. state information).

In OpenComRTOS, only one Task can execute at a given time on a given Node. This means that if there
are many Tasks running on the same Node, the scheduler will divide the available processing time over the
Tasks according to a Task scheduling policy. When using a priority based scheduler the priorities are to
be assigned by the application developer who has to assure that all Tasks can meet all deadlines.

During their operation the Tasks may request the Kernel for services such as sending or receiving Packets
via Ports. Typically, the Tasks will wait for events like the completion of such requests. Note that Tasks can
run independently without issuing any service request, although this can lead to starvation for other Tasks.
The “data” fields of a sent or received Packet may be “empty” (i.e. pure synchronization without data
communication exchange).

A Task starts by being started from another Task or during kernel initialisation. It may have finished, which is
called STOPPED (sometimes called Terminated).

Hence, a Task is further defined by:

A Task is an operating resource that is always in only one of the following states, managed
by OpenComRTOS:

• INACTIVE (the initial state, similar to STOPPED)

• RUNNING (sometimes called “ACTIVE”)

• WAITING (for a service request to complete, sometimes called “INACTIVE”.)

• READY (to run)

• SUSPENDED

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 17 of 60

• STOPPED

Note that the normal states in operation are RUNNING, WAITING, READY and STOPPED. The
SUSPENDED state is the result of an explicit suspend request and is orthogonal to the normal states. This
means that a waiting status remains possible when the task is being suspended. It can only be changed by a
resume request by e.g. a monitoring Task. Hence, a task should not suspend itself as the suspend state is
introduced mainly to be able to handle exceptional application level conditions that require e.g. to prevent a
Task from doing any potential harm. For example, it can be used to stop a robot arm from moving when an
obstacle has been detected that should not be in its path.

When many Tasks run on the same Node, they compete for the CPU time in order of their priority. A higher
priority means that when several Tasks are ready to run, the one with the highest priority will run first.
Hence, a Task is further defined by:

A Task is an operating resource that has a PRIORITY. A priority has a value in the integer
range from 0 to 255, with 0 being the highest priority.

To provide many Task instances with the same (local) function, OpenComRTOS allows Tasks to start with
a list of Task specific arguments.

Finally, at the system level but hidden from the application programmer, each Task including the Kernel
Tasks and Driver Tasks, have a dedicated Input Port.

The logical model of a Task is represented by Figure 8:

+TaskID

+EntryPoint

+Arguments

+Workspace

-TaskInput Port

+RequestPacket

+TaskState

+Priority

Task

Figure 8. Logical model of a Task

3.1.2. Logical view of Packets

In OpenComRTOS, the interacting Tasks interchange Packets of a fixed size. The “fixed size” of a Packet
means that the physical size of Packet is always the same and that the real size of the interchanged data in
the Packet can not be greater than this size. A Packet contains so called header information that includes a
number of the header specific fields, including the size of the user data (sometimes called payload). The
Packet size is defined at compile time and can be application specific but it can never be smaller than the
space needed for the header fields.

In each concrete case, the interchanged Packet is also supplied with the exact length of the attached
interchanged data.

Hence, a Packet is defined as follows:

A Packet is an entity that consists of

• A fixed size header including:
o Service specific fields
o the (user) Data Size field

• The data limited in length to the Data Size field

• Remaining unused space of the data portion of the packet (in any).

The Data Size of a Packet can be zero or maximum equal to the Packet Size minus the size of Header.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 18 of 60

The logical model of a data Packet is represented by Figure 9.

+Header

+ ServiceFields

+ Datasize

+Data

-Padding

Packet

Figure 9. Logical model of a Packet

Note:
OpenComRTOS also has internal Packets that are not allocated dynamically and are not part the Packet
Pool. These Packets (just like the Task Input Ports) are statically allocated at system configuration time.

NOTE:
In the text often the terms Send_ or Receive_Request_Packet will be used. Often, this is still same physical
Packet but who’s function has changed by an update of its header fields depending on the status of its
processing.

3.1.3. Logical view of Ports

When sending a Packet, a Task sends it to the specified Port, where the Packet has to be delivered. If the
service requires synchronization, a reference to the packet will be stored. In the implementation, copying of
Packets is avoided and a pointer to the Packet will be passed. This implies that a Packet is owned by the
Task that uses it to avoid that multiple tasks can modify a Packet’s content or that the kernel tasks assures
that only one task can write to the Packet at a given time. Similarly, when receiving a Packet, a Task
receives it from the specified Port. The Packet is to be delivered to the Port by a sending Task. In both
cases, a Port has to be specified, so it has to be identifiable. Hence, a Port is defined as:

A Port is an identifiable entity with a globally unique identifier in the distributed system.

The purpose of a Port is defined as:

A Port is an entity used to synchronise the interchange of Packets between interacting Tasks.
The synchronisation is handled by the Kernel Task.

If a Task sends a Packet to a Port, and no other Tasks has yet requested to receive a Packet from that
Port, then the sending Task will wait until such request arrives at the Port. Note that any number of Tasks
(more than one) may send Packets to the same Port at any time.

Vice versa, if a Task requests to receive a Packet from a Port, and no sent Packets are available, the Task
becomes waiting until a sent Packet arrives at the Port. A number of Tasks (more than one) may request
Packets from the same Port simultaneously. As such, a Port is further defined as:

A Port is an entity that buffers the requests to send or to receive Packets until
synchronisation occurs.

The sent and received Packets are “buffered” in a Port by means of a priority-ordered list of Packets. The
priority of an element in the list is inherited from the requesting Task.

According to the above mentioned relationships between Tasks, Ports and data Packets, the logical model
of a Port is represented by Figure 10. Note that while two waiting lists are indicated, at L0 level only one of
them will be used. Both waiting lists are needed for L1 and L2 level services.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 19 of 60

+PortID

+SendRequestWaitingList

+ReceiveRequesWaitingList

Port

Figure 10. Logical model of a Port

3.1.4. Logical view of the Packet Pool

Every Task has a pre-allocated Packet that can be used for a single phase interaction between tasks. In
order to allow two-phase interactions the Task has to allocate extra Packets from the Packet Pool that is
located on its local Node. (see. 3.3.3).

After a Task has received and processed a Packet, the Task has to deallocate this Packet to return it to the
Packet Pool that is located on its local Node.

The Packet pool of a Node is an operating resource that maintains a list of free Packets.

If a Task requests a Packet from the Packet Pool, and the Packet Pool has no free Packets
then the requesting task becomes waiting until another task has de-allocated a Packet so that
this Packet can be allocated to satisfy the request.

The requests to allocate Packets are “buffered” by means of a priority-ordered list. These are actually a list
of pre-allocated packets used by OpenComRTOS to implement the service requests. The priority of an
element in the list is inherited from the requesting Task.

The logical model of the Packet Pool is represented by Figure 11.

+PacketList

+WaitingList

Packet Pool

Figure 11. Logical model of the Packet Pool

3.2. Inter-node interactions

3.2.1. Logical view of Link Drivers and inter-node interactions

OpenComRTOS implements INTER-NODE LINKs (see Section 2.4) using the relationship between a
communicating Task and a Link Driver Task, explained in Section 3.2.

• The LinkTX of an INTER-NODE LINK is implemented through a dedicated Link Driver
Task that transmits Packets to the directly connected remote Node via the
appropriate hardware.

• The LinkRX of an INTER-NODE LINK is implemented through a dedicated SW entity in
ISR LAYER that injects the received Packets in the Kernel Port. The Kernel will
deliver the Packets to the appropriate local Ports and Task Input Ports, or route the
Packets to the LinkTX of the appropriate INTER-NODE LINKs (i.e. to a Driver Input
Port) as applicable.

A Link Driver Task will implement the following behaviour:

• The Link Driver Task is waiting for a Packet on the Driver Input Port.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 20 of 60

• The Link Driver Task will process the Packet on the Driver Input Port. (e.g. transmitting
the packet over a LinkTX)

The interaction scheme of the involved entities is shown in the following figure.

Figure 12. Communication between INTER-NODE LINKs and Tasks

Note: The Tasks, Link Driver Task and ISR layer interact with each other ONLY via the Kernel, as described
below.

To provide the interacting Tasks with a simple and sufficient way for addressing the INTER-NODE LINKs,
OpenComRTOS has adopted the following mechanism:

An INTER-NODE LINK is addressed by the Input Port of the Driver Task that is driving the
link.

When a Task calls a L0 service to send a Packet to a remote Port, the following sequence of actions is
performed:

L0_SendPacket_W (Send_Request_Packet, Remote Port)

This function will in the context of the Task update the Header of the
Packet to be sent to a Port and inserts it in the Kernel Input Port. The

Kernel will call the Router function to connect the Remote Port with a
local TX Driver Input Port. The Driver Task then forwards the Packet to
the destination Node by the lower level protocols.

When the Return Packet arrives, the Kernel will make the Task ready again

and the task can retrieve the return value from its preallocated Packet.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 21 of 60

When an interacting Task calls a L0 service to receive a Packet from a remote Port, the following
sequence of actions is performed:

L0_ReceivePacket_W (Receive_Request_Packet, Remote_Port)

This function will in the context of the Task update the Header of the

Packet to be retrieved from a Port and inserts it in the Kernel Input

Port. The Kernel will call the Router function to connect the Remote Port

with a local TX Driver Input Port. The Driver Task then forwards the
Packet to the destination Node by the lower level protocols.

When the Return Packet arrives, the Kernel will make the Task ready again
and the task can retrieve the data and the return value from its

preallocated Packet.

When two Inter-Node LINKs of the same Node are used to pass a Packet from one remote Port to another
(so-called through-routing), then only one operation is performed by the Link Driver Task that has received
the Packet from the HW. After having passed on the Packet to the Kernel, the Kernel will insert the Packet

in the Driver Input Port of the output Inter-Node LINK.

3.2.2. Logical view of the Router

The Router provides a way to map a target Node with a Driver Input Port that has to be used to route the
Packets.

The Router is used in three cases:

• Sending a Packet to a remote Port

• Receiving a Packet from a remote Port

• Forwarding a Packet from a neighbouring node to another neighbouring node

3.3. Multi-tasking

As defined in Section 2.1, multiple Tasks may run on a single Node but only one Task can execute at a
given time on a given Node.

3.3.1. Definition of multi-tasking

Multi-tasking as provided by OpenComRTOS, is defined as follows:

The multi-tasking is priority based, such that a higher priority Task that is ready to run gets
the CPU in favour of a lower priority one (that is also ready to run)

The multi-tasking is pre-emptive, such that when a higher priority Task becomes ready to run,
it will pre-empt immediately a running Task of lower priority (hence the scheduler will switch
contexts)

The multi-tasking performs Round-Robin (or FIFO based) scheduling among equal priority
Tasks that are ready to run. Time-slicing, when enabled can only happen between Tasks of
equal priority.

3.3.2. Logical view of the Context Switch

Logically, multi-tasking is supported by an atomic operation that switches the CPU context from one Task (to
deactivate the running Task) to another one (to continue another ready Task). This operation is called the
Context Switch.

The Context Switch is an atomic (non-interruptible) operation that saves the CPU context of
the running Task, that is being deactivated, and restores the CPU context of another ready
Task, that is being activated to run.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 22 of 60

In most practical implementations, the context Switch restores the essential CPU registers in such a way,
that the resumed Task continues running right after the Context Switch from the point where its context was
saved. The re-activated Task runs like if it was not ever deactivated. Note however that such states are
orthogonal to the waiting and suspended states.

3.3.3. Logical view of the Kernel

The only way the Tasks can invoke the services of OpenComRTOS Layer L0 is to request the services
from the Kernel, which runs as a separate Task.

The Kernel of OpenComRTOS is a dedicated Task that serves the L0 service requests from
the running Tasks and other software layers (e.g. from a HW ISR and Driver Tasks).

All requests are passed to the Kernel using Packets, delivered to a dedicated input Port called the Kernel
Port.

The Kernel Port is the only Port where the Packets are delivered directly in the context of a
Task that inserts the Packet. Only the Kernel Task delivers the Packets to all other Ports.

OpenComRTOS defines the following:

When a Packet is delivered to the Kernel Port, the requesting Task is set in the WAITING
state.

The Kernel sets the Requesting Task in the READY state only after the service request has
been served (completed).

The Kernel IS NOT ALLOWED TO access the Packet after having set the requesting Task back
in the READY state.

Each service of the Kernel is provided as a dedicated function call, exported to other SW layers as a part of
the Kernel API.

The Kernel provides the following functional API calls to allocate, send, receive and release
the Packets:

Single Phase Services These services will always return before the task

can issue a new service.

Task management services

L0_SuspendTask_W Suspends a Task at its current instruction.

L0_ResumeTask_W Resumes a Task from its current instruction.

L0_StartTask_W Starts a Task from its entry point

L0_StopTask_W Stops a Task and resets the instruction pointer to
the Task’s entry point

Packet Pool services

L0_AllocatePacket_W Waits until a Packet has been allocated.
L0_AllocatePacket_WT Waits until either a Packet has been allocated or

the specified timeout has expired. If the timeout
has expired the return value indicates a failed
allocation (there was no available Packet in the
Packet pool)

L0_AllocatePacket_NW As above but returns immediately either with the
allocated Packet or with a return value indicating
failure (if there was no available Packet in the

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 23 of 60

Packet pool).
L0_DeallocatePacket_W De-allocates a Packet.

Port based services

L0_SendPacket_W Waits until the sent request has synchronised with
a corresponding request to receive a Packet from
the specified Port.

L0_SendPacket_WT Waits until either the sent request has
synchronised with a corresponding request to
receive a Packet from the specified Port, or else
the specified timeout has expired. If the timeout
has expired the return value indicates a failed
request (there was no corresponding request to
receive a Packet from the specified Port) and the
sent Packet is removed from the specified Port.
Upon failure the requesting Task has to take
appropriate action, e.g. de-allocate the Packet.

L0_SendPacket_NW As above but returns immediately after the Packet
was delivered to the specified Port. Indicates either
success (there was a corresponding request to
receive a Packet from the destination Port) or
failure (there was no corresponding request to
receive a Packet from the specified Port; in that
case the sent Packet is NOT buffered in the
specified Port). Upon failure the requesting Task
has to take appropriate action, e.g. de-allocate the
Packet.
Note: if the specified Port is remote than the return
time includes a communication delay.

L0_ReceivePacket_W Waits until the request has encountered a
corresponding sent packet delivered to the
specified Port. Upon success the calling Task has
to de-allocate the Packet after processing it.

L0_ReceivedPacket_WT Waits until either the request has encountered a
corresponding send request delivered to the
specified Port, or either the specified timeout has
expired. If the timeout has expired the return value
indicates a failed request (there was no
corresponding request to receive a Packet from the
specified Port) and the receive Packet is removed
from the Specified Port. Upon success, the calling
Task has to de-allocate the Packet after processing
it.

L0_ReceivePacket_NW Returns immediately after the request was
delivered to the specified Port, indicating either
success (there was a corresponding send request
at the specified Port) or a failure (there was no
send request at the specified Port; in that case the
receive Packet is NOT buffered in the specified
Port). Upon success the calling Task has to de-
allocate the Packet having it processed.
Note: if the specified Port is remote than the return
time includes a communication delay.

Two Phase services These services decouple the service request from

the return of the service by requiring the task to call
two paired services. In between, the task can call
other services but the programmer is responsible
for a correct operation.

L0_SendPacket_Async Send a Packet (that must be allocated from the

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 24 of 60

Packet Pool) to a Port and return immediately
without being put in the waiting state. Completion is
deferred till a corresponding L0_WaitForPacket
service request which will return any of the packets
previously send asynchronously.

L0_ReceivePacket_Async Request to Receive a Packet from a Port without
being put in the waiting state. This service requires
that the receive requests use a Packet has been
allocated from the Packet Pool). The completion is
deferred till a corresponding L0_WaitForPacket
service request which will return any of the packets
previously allocated but filled in with the data of a
corresponding send_request to one of the Ports.

L0_WaitForPacket_(N)W(T) This service waits for any Packet. The programmer
is responsible to take care of correct bookkeeping
in terms of the allocated Packets.

The template algorithm describing how a Task requests a service from the Kernel is represented by Figure
14.

Having passed a request to the Kernel, a Task becomes in the waiting state, resulting in
switching the context to the Task with the highest priority among the Tasks that are READY
to run.

The Kernel Task has a priority higher than any other Task (incl. Link Driver Tasks).

The Kernel Task will process all requests on its Input Port until the waiting list is empty
before calling the scheduler to execute the next highest priority Task on the ready list.

Tasks from the Application Layer are not the only ones that may request a service from the Kernel. In
particular, a HW ISR can request a service. As the HW ISR environment (further ISR LAYER) cannot be set
in a waiting state, OpenComRTOS defines the following restriction:

The ISR LAYER is only allowed to send a Packet to the local Kernel Task Input Port.

The Packets, being sent, are delivered to the Port in the context of the ISR LAYER (i.e. without
switching to the Kernel Task).

These Packets will contain a Service ID that will be used by the Kernel task to invoke a
specific function as needed by the application.

Running as a Task, the Kernel performs the following sequence of operations in a loop, shown in Figure 15.
When the Kernel has processed all requests retrieved from its input Port, it comes in the state of waiting for
other requests, and as such passes the CPU back to other Tasks.

The logical model of the Kernel is represented by Figure 13:

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 25 of 60

Figure 13. Logical view of the Kernel

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 26 of 60

Use (pre)allocated Packet

Update Packet fields

from the arguments

Insert Packet

to L0 Kernel Port

L0_ServiceRequest

 (arguments)

Retrieve Packet from

L0 Kernel Port

Serve the Request

Send Return Packet to Task Input Port

Requesting Task L0 Kernel

Switch Context

(to L0 Kernel)

Context Switch

(to Requesting Task)

Figure 14. Template scenario of the serving of a request to the Kernel

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 27 of 60

Wait for a Packet

A Packet delivered to the

L0 Kernel Port

Process Packet

L0 Kernel Task Entry point

Update Tasks state

and call Scheduler as needed

Figure 15. The Kernel Loop

3.3.4. Logical view of the L0 Scheduler

For providing multi-tasking OpenComRTOS has a L0 Scheduler, that is defined in the following way:

The Scheduler is a functional entity that decides which Task has to execute next, among all
Tasks ready to run.

To know what Tasks are READY to run, the Scheduler manages a dedicated (and only one)
list of Tasks, called the READY list.

The Scheduler is invoked to decide what Task to run next only in case of the following state
changes in the OS environment:

• a Task becomes ready to run and has been put into the READY list.

• If a Task is no longer READY to run, it will be removed from the READY list.

The READY list is a priority-ordered list of Tasks.

The Scheduler is the only SW Unit that does the Context Switch between Tasks

The Scheduler DOES NOT decide which Task becomes READY to run and which Task
becomes WAITING, it just schedules the task that has the highest priority on the READY List.
The decisions are always made by the logic of interaction with the Ports (see Section 3.1.3) or
by the logic of the service requested of the Kernel Task by a Task. (see Section 3.3.3).

The logical model of the Scheduler is shown in Figure 16:

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 28 of 60

Figure 16. Logical view of the Scheduler

4. Design view of Layer 0

4.1. Predefined constants

L0_PacketSize Size of the L0_Packets
L1_PacketSize Size of the L1_Packets
L2_PacketSize Size of the L2_Packets
L0_DataSize Size of the Data in a L0 Packet (in Bytes)
L0_InfiniteTimeOut Infinite timeout (0xFFFF Hex)

4.2. Data types

4.2.1. BYTE

BYTE is a 8-bit unsigned integer type.

4.2.2. INT16

INT16 is a 16-bit signed integer type.

4.2.3. INT32

INT32 is a 32-bit signed integer type.

4.2.4. UINT16

UINT16 is a 16-bit unsigned integer type.

4.2.5. UINT32

UINT32 is a 32-bit unsigned integer type.

4.2.6. BOOL

BOOL is a basic integer type sufficient to represent the values: TRUE and FALSE.

4.2.7. EntityAddress

EntityAddress is an abstract type that represents an identifier of an Entity.

EntityAddress is a system wide address represented by a 32 bit data structure with the following 8bit

fields: LocalEntityID, NodeID, SiteID, ClusterID.
In practice at L0 we will only find EntityAdresses for Tasks en Ports and the context will allow to distinguish
between them. In this context we call them TaskID and PortID.

4.2.7.1 TaskID

TaskID is a type that represents an identifier of a Task .

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 29 of 60

TaskID is a system wide identifier represented by a 32 bit data structure divided in the following 8bit fields:

LocalTaskID, NodeID, SiteID, ClusterID.

4.2.7.2 PortID

PortID is an type that represents an identifier of a Port on a Node.

PortID is a system wide identifier represented by a 32 bit datastructure divided in the following 8bit fields:

LocalPortID, NodeID, SiteID, ClusterID.

4.2.8. L0_Prio

L0_Prio is a basic unsigned integer type sufficient to represent the values from 0 to 255, identifying the

priority of a Task or a Packet.

4.2.9. L0_Timeout

L0_Timeout is a basic unsigned integer type that represents a timeout value in milliseconds. The

maximum value, allowed by the appropriate L0_Timeout integer type, is interpreted as an infinite timeout.

For example if L0_Timeout is provided by the means of a 16-bit unsigned integer, then the infinite timeout

is 0xFFFF Hex. The infinite timeout is (should be) referred as named constant L0_Infinite_TimeOut

4.2.10. L0_ListElement

L0_ListElement is a structure that is an element of a bidirectional linked list.

Figure 17 L0_ListElement

4.2.11. L0_PrioListElement

L0_PrioListElement is a structure that is an element of an ordered bidirectional linked list. The list is

ordered is descending order of the priorities of the list elements.

Figure 18 L0_PrioListElement

Remarks:

ListElement defines a prioritized list element as an ordinary (not prioritized) list element. Actually,

ListElement is the “head” part of L0_PrioListElement. So, the pointer to an object of type

L0_PrioListElement coincides with the pointer to its element ListElement.

4.2.12. L0_List

L0_List is a structure that maintains L0_ListElement elements in a linear arrangement and allows efficient

insertions and deletions at any location within the sequence. The sequence is stored as a bidirectional linked
list of elements, each containing an element of the same type.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 30 of 60

Figure 19 L0_List

4.2.13. L0_PrioList

L0_PrioList is a structure that maintains L0_PrioListElement elements in a linear arrangement and

allows efficient insertions and deletions at any location within the sequence. The sequence is stored as a
bidirectional linked list of elements, each containing an element of the same type. The list is ordered is
descending order of the priorities of the list elements.

Figure 20 L0_PrioList

4.2.14. L0_TaskArguments

L0_TaskArguments is a data structure representing the startup arguments of a Task. The semantics of

each concrete use of L0_TaskArguments is specific for each Task. For example, L0_TaskArguments

can be assigned to a pointer to an array of parameters, or being cast to an integer for a single parameter.

4.2.15. L0_TaskFunction

L0_TaskFunction is a pointer to a function with one input parameter of type L0_TaskArgs. The function,

pointed to by L0_TaskFunction is used as an entry point to start a Task.

4.2.16. L0_Status

L0_Status is an enumeration type used to specify the result of a service request (success, failure, etc.).

RC_OK Return code for a successful request

RC_Fail Return code for a failed request

RC_TimeOut Return code for a failed request after the
timeout expired.

4.2.17. L0_ServiceID

L0_ServiceID is an enumeration type used to identify the services, provided by the Kernel.

L0_SID_AllocatePacket Service identifier for allocation of a packet
L0_SID_DeallocatePacket Service identifier for deallocation of a packet
L0_SID_SuspendTask Service identifier for suspension of a task
L0_SID_ResumeTask Service identifier for resumption of a task
L0_SID_StartTask Service identifier for starting a task
L0_SID_StopTask Service identifier for stopping a task
L0_SID_SendPacket Service identifier for sending of a packet
L0_SID_ReceivePacket Service identifier for receiving of a packet
L0_SID_ReceiveAnyPacket Service identifier for receiving any packet

(only used by TX Driver Tasks)

Figure 21 L0_ServiceID

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 31 of 60

4.3. The design view of a Task
A Task is instantiated by a data structure L0_TaskControlRecord. The whole set of

L0_TaskControlRecords is called the L0_TaskControlBlock.

A Error! Reference source not found.Record does not contain an explicit indication of the Task

state unless SUSPENDED. The states are implicitly indicated by the following conditions:

• A Task is RUNNING, if it is an element of the READY List of the L0 Scheduler.

• A Task is WAITING, if it has a Packet in a waiting list (of a Port or of the Packet Pool).

• A Task is SUSPENDED if it is marked as SUSPENDED.

+PrioListElement : L0_PrioListElement

+EntryPoint : L0_TaskFunction

+Arguments : L0_TaskArguments

+isSuspended : BOOL

+TaskInputPort : L0_Port

+RequestPacket : L0_Packet

+Workspace : L0_TaskWorkspace

L0_TaskControlRecord

Figure 22 L0_TaskControlRecord

Remarks:
• PrioListElement defines a Task as a prioritized list element. Actually, PrioListElement is the

first field of L0_TaskControlRecord. The pointer to an object of type L0_TaskControlRecord

coincides with the pointer to its element PrioritizedListElement.

• Prio of PrioListElement is the priority of the Task.

• EntryPoint specifies the function of a Task.

• Arguments specifies arguments of a Task.

• IsSuspended indicates if a Task is suspended.

• InputPort identifies the Input Port of the Task. (Driver Input Port or Task Input Port.

• RequestPacket specified in Section Error! Reference source not found., which is a Task’s pre-

allocated (static) Packet.

• TaskContext is a platform dependent part used to store essential descriptors of the current state
of a Task when switching the CPU context to another task. (i.e. the CPU Context defined in Section
3.1.1)

4.4. The design view of a Packet
A Packet is instantiated by a data structure Error! Reference source not found.. When in use, a
Packet will often be an element of waiting lists. The model of a Packet is derived from the model of the
prioritized list element (see L0_PrioListElement).

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 32 of 60

+PrioListElement : L0_PrioListElement

+ServiceID : L0_ServiceID

+RequestingTaskID : L0_TaskID

+DestinationPort : L0_PortID

+Timeout : L0_TimeOut

+Status : L0_Status

+DataSize : INT16

+Data[DataSize] : BYTE

L0_Packet

Figure 23 L0_Packet

Remarks:
PrioListElement defines a Packet as a prioritized list element. Actually, PrioListElement is the

first field of a L0_Packet. So, the pointer to an object of type L0_Packet coincides with the pointer to

its element PrioListElement. The Priority of PrioListElement is the priority of the Packet.

ServiceID specifies the Service that is requested by a Packet from the Kernel.

RequestingTaskID specifies the Task that owns the Packet. This includes the LocalTaskID, NodeID,

ClusterID and SiteID.

DestinationPortID specifies the Port to/from which the Packet has to be sent/received. This

includes the LocalPortID, NodeID, ClusterID and SiteID.

TimeOut specifies the timeout (if any) associated with the requested service.

Status indicates the status of completion of the service, set by the Kernel when it finishes serving the

request.

DataSize specifies the size of the user data, supplied to the Packet. It can be zero.

Data specifies the data, supplied to the Packet. Depending on the value of ServiceID, the content of

Data may be one of the following:

• If ServiceID is SID_ALLOCATE_Packet, then Data is never used.

• If ServiceID is SID_DEALLOCATE_Packet, then Data is never used.

• If ServiceID is SID_SendPacket or SID_ReceivePacket, then Data contains the data

that has to be delivered to a receiving Task.

4.5. The design view of a Port
L0_Port is a data structure representing a Port.

The architecture defines the logical view of a Port as one that has two waiting lists: the Receive Request
Waiting List and the Send Request Waiting List. From design point of view there is no need to operate
with two waiting lists as the requests cancel each other out. At any given point in time, there can either be
only receive request(s), or only send request(s) or the waiting lists are empty.

Inserting or removing an element in the waiting list must be an atomic operation.

Figure 24 L0_Port

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 33 of 60

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 34 of 60

5. Procedures and algorithms

5.1. Kernel API calls

5.1.1. L0_Status L0_StartTask_W (TaskID)

This will start the task with TaskID and add it to the READY list of the node on which the Task resides.

Parameters:

TaskID - the Task to start

Return value:

RC_OK - the Task has started successfully.

RC_FAIL - the service failed.

Pre-conditions:

• Task is inactive

• Task is initialised and ready to start

• All elements of TaskControlRecord are filled in, incl. entrypoint and stack address

• The Task cannot start itself

Post-conditions:

• Task is on the READY list (case RC_OK)

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 35 of 60

Use (pre)allocated Packet

Update Packet fields

from the arguments

Insert Packet

in L0 Kernel Port

Retrieve Packet from

L0 Kernel Port

Update Task Control Record

Set Task Entry Point

Insert Requesting Task in Ready List

Requesting Task
L0 Kernel

Node A

Switch Context

(to L0 Kernel)

Context Switch

(to Requesting Task)

Insert Task in Ready List

Insert Packet

in Driver Input Port

[Task is Remote]

[Task is Local]

Switch Context

(to Link Driver)

Retrieve Packet from

Driver Input Port

Transfer Packet

(Comm link HW)

Insert Packet

in L0 Kernel Port

Switch Context

(to Link Kernel)

Retrieve Packet from

L0 Kernel Port

Update Task Control Record

Set Task Entry Point

Insert Task in Ready List

[Task is Remote]

[Task is Local]

Send (Acknowledgement) Packet to Requesting Task,

 i.e. Insert Packet in Driver Input Port

Link Driver

Node A

HW ISR

Link Driver

Node B

L0 Kernel

Node B

Switch Context

(to Link Driverl)

Retrieve Packet from

Driver Input Port

release Packet

(on this Node)

Transfer Packet

 on Comm Link

Transfer Packet

(Comm link HW)

get (pre)Allocated Packet

(from RxPacketPool)

Insert Packet

in Kernel Port

Switch Context

(to L0 Kernel)

Insert Requesting Task in Ready List

Link Driver

Node B

get (pre)Allocated Packet

(from RxPacket Pool)

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 36 of 60

5.1.2. L0_Status L0_StopTask_W (TaskID)

This will stop the task with TaskID, remove it from the READY list, remove any pending Packets on all
waiting lists and restore the entry point.

Parameters:

TaskID - the Task to stop

Return value:
RC_OK - the Task has started successfully.

RC_FAIL - the service failed.

Pre-conditions:

• Task is not inactive and not stopped

• The Task is not the requesting task itself

Post-conditions:

• Task is no longer on any waiting list (see release notes)

• Entry Point restored

• Any data may be lost

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 37 of 60

Use (pre)allocated Packet

Update Packet fields

from the arguments

Insert Packet

in L0 Kernel Port

Retrieve Packet from

L0 Kernel Port

Update Task Control Record

Set Task State to Inactive

Insert Requesting Task in Ready List

Requesting Task
L0 Kernel

Node A

Switch Context

(to L0 Kernel)

Context Switch

(to Requesting Task)

Insert WaitForReturn Packet

in Task Input Port

Remove Task from Ready List

(if needed)

Remove from all Waiting Lists

Insert Packet

in Driver Input Port

[Task is Remote]

[Task is Local] Switch Context

(to Link Driver)

Retrieve Packet from

Driver Input Port

Transfer Packet

(Comm link HW)

Insert Packet

to L0 Kernel Port

Switch Context

(to Link Kernel)

Retrieve Packet from

L0 Kernel Port

Update Task Control Record

Set Task State to Inactive

Remove Task from Ready List

(if needed)

Remove from all Waiting Lists

[Task is Remote]

[Task is Local]

Send (Acknowledgement) Packet to Requesting Task,

 i.e. Insert Packet in Driver Input Port

Link Driver

Node A

HW ISR

Link Driver

Node B

L0 Kernel

Node B

Switch Context

(to Link Driverl)

Retrieve Packet from

Driver Input Port

release Packet

(on this Node)

Transfer Return Packet

 on Comm Link

Transfer Packet

(Comm link HW)

get (pre)Allocated Packet

(from RxPacket Pool)

Insert Packet

in Kernel Port

Switch Context

(to L0 Kernel)

Insert Requesting Task in Ready List

Link Driver

Node B

get (pre)Allocated Packet

(from RxPacket Pool)

Note:

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 38 of 60

This service must be used with caution. It assumes perfect knowledge about the system by the invoking
Task. Normally only to be used when the Task is found to misbehaving (e.g. Stack overflow, numerical
exception, etc.)

Additional kernel service (messages) may be used for the clean-up of pending Packets in waiting list on
other nodes. This “clean-up” behaviour is NOT shown in the Figure above.

5.1.3. L0_Status L0_SuspendTask_W (TaskID)

This will suspend the task with TaskID and mark it as such in the Task Control Record.

Parameters:

TaskID - the Task to suspend

Return value:
RC_OK - the Task has been suspended successfully.

RC_FAIL - the service failed.

Pre-conditions:

• The Task is not the requesting task itself

Post-conditions:

• Task is marked as suspended

• Requests for the task can continue to arrive from other tasks

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 39 of 60

Use (pre)allocated Packet

Update Packet fields

from the arguments

Insert Packet

in L0 Kernel Port

Retrieve Packet from

L0 Kernel Port

Update Task Control Record

Set Task State to Suspended

Insert Requesting Task in Ready List

Requesting Task
L0 Kernel

Node A

Switch Context

(to L0 Kernel)

Context Switch

(to Requesting Task)

Insert Packet

in Driver Input Port

[Task is Remote]

[Task is Local]

Switch Context

(to Link Driver)

Retrieve Packet from

Driver Input Port

Transfer Packet

(Comm link HW)

Insert Packet

in L0 Kernel Port

Switch Context

(to Link Kernel)

Retrieve Packet from

L0 Kernel Port

Update Task Control Record

Set Task State to Suspended

[Task is Remote]

[Task is Local]

Send (Acknowledgement) Packet to Requesting Task,

 i.e. Insert Packet in Driver Input Port

Link Driver

Node A

HW ISR

Link Driver

Node B

L0 Kernel

Node B

Switch Context

(to Link Driverl)

Retrieve Packet from

Driver Input Port

release Packet

(on this Node)

Transfer Return Packet

 on Comm Link

Transfer Packet

(Comm link HW)

get (pre)Allocated Packet

(from RxPacket Pool)

Insert Packet

in Kernel Port

Switch Context

(to L0 Kernel)

Insert RequestingTask in Ready List

Link Driver

Node B

get (pre)Allocated Packet

(from RxPacket Pool)

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 40 of 60

The suspend service is the fastest way to prevent a Task from executing any further code. It should only be
used when the application has a good reason and need to be followed by an analysis, eventually resulting in
a corrective action (e.g. by an operator or stopping and restarting a Task).

Pending Packets in any waiting list remain pending, and are continued to be processed e.g. synchronization.
In particular, the Task may remain and inserted in the READY List. The task is however never made
RUNNING.

5.1.4. L0_Status L0_ResumeTask_W (TaskID)

This call will resume the task at the point it was when suspended

Parameters:

TaskID - the Task to resume

Return value:
RC_OK - the Task has been resumed successfully.

RC_FAIL - the service failed.

Pre-conditions:

• Task was in suspend state

Post-conditions:

• Task resumed at the point it was when suspended.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 41 of 60

Use (pre)allocated Packet

Update Packet fields

from the arguments

Insert Packet

in L0 Kernel Port

Retrieve Packet from

L0 Kernel Port

Update Task Control Record

Insert Requesting Task in Ready List

Requesting Task
L0 Kernel

Node A

Switch Context

(to L0 Kernel)

Context Switch

(to Requesting Task)

Insert Packet

in Driver Input Port

[Task is Remote]

[Task is Local]
Switch Context

(to Link Driver)

Retrieve Packet from

Driver Input Port

Transfer Packet

(Comm link HW)

Insert Packet

to L0 Kernel Port

Switch Context

(to Link Kernel)

Retrieve Packet from

L0 Kernel Port

Update Task Control Record

[Task is Remote]

[Task is Local]

Send (Acknowledgement) Packet to Requesting Task,

 i.e. Insert Packet in Driver Input Port

Link Driver

Node A

HW ISR

Link Driver

Node B

L0 Kernel

Node B

Switch Context

(to Link Driverl)

Retrieve Packet from

Driver Input Port

release Packet

(on this Node)

Transfer Packet

 on Comm Link

Transfer Packet

(Comm link HW)

get (pre)Allocated Packet

(from RxPacket Pool)

Insert Packet

in Kernel Port

Switch Context

(to L0 Kernel)

Insert Requesting Task in Ready List

Link Driver

Node B

get (pre)Allocated Packet

(from RxPacket Pool)

Note:

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 42 of 60

5.1.5. L0_Status L0_AllocatePacket _{NW|W|WT } (L0_Packet *Packet, [L0_Timeout Timeout])

This Kernel service is called by a Task to allocate a Packet from the Packet Pool.

Parameters:

L0_Packet *Packet - will contain the Packet upon successful return.

L0_Timeout Timeout - Timeout value.
 Timeout > 0 and < InfiniteTimeout
 Timeout = InfiniteTimeout(_W variant)
 Timeout = 0 stands for _NW variant

Return value:
RC_OK - service terminated successfully (there was an available Packet in the Packet

Pool).
RC_FAIL - service failed (no available Packet in the Packet Pool).

RC_FAIL_TO - service failed and returned after Timeout.

Pre-conditions:

• This service cannot be called from the ISR LAYER

Post-conditions:

• ServiceID of the pre-allocated Packet of the calling Task will be set to SID_Allocate_Packet.

• Task is on READY list upon return

• Packet can be used for two-phase services

Figure 25. Algorithm of the procedure L0_AllocatePacket

5.1.6. void L0_DeallocatePacket_W(L0_Packet Packet)

This Kernel service is called by a Task to DEALLOCATE a Packet and return it to the Packet Pool.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 43 of 60

Parameters:

L0_Packet Packet - the Packet that has to be de-allocated.

Return value:

RC_OK or RC_Fail

Pre-conditions:

• This service cannot be called by ISR LAYER

• Packet must have been allocated by L0_AllocatePacket

Post-conditions:

• Packet is no longer available for use by Task

Figure 26. Algorithm of the procedure L0_DeallocatePacket

5.1.7. L0_Status L0_SendPacket_{NW|W|WT } (L0_PortID Port, L0_Packet Packet, [L0_Timeout
Timeout])

This Kernel service is called by a Task to send a Packet to a Port.

Parameters:

L0_PortID Port - identifies the Port, to which the calling Task wants to send a

Packet.
L0_Packet Packet - the Packet that has to be sent.

L0_Timeout Timeout - Timeout value.

Return value:

RC_OK - service successful (there was a waiting receive request in the Port)

RC_FAIL - service failed (no corresponding receive request in the Port)

RC_FAIL_TO - service failed and returned after Timeout

Pre-conditions:

• Packet is the preallocated Packet

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 44 of 60

Post-conditions:

• Header fields of preallocated Packet filled in

Figure 27 Algorithm of the procedure L0_SendPacket

5.1.8. L0_Status L0_ReceivePacket_{NW|W|WT } (L0_PortID Port, L0_Packet Packet, [L0_Timeout
Timeout])

This Kernel service is called by a Task to receive a Packet from a Port.

Parameters:

L0_PortID Port - identifies the Port, to which the calling Task wants to send a

Packet.
L0_Packet Packet - the pre-allocated Packet

L0_Timeout Timeout - Timeout value.

Return value:

RC_OK - service successful (there was a waiting send request in the Port)

RC_FAIL - service failed (no corresponding send request in the Port)

RC_FAIL_TO - service failed and returned after Timeout

Pre-conditions:

• Packet is the preallocated Packet
Post-conditions:

• Header fields of preallocated Packet filled in

• Data of send Packet will have been filled in

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 45 of 60

Figure 28 Algorithm of the procedure L0_ReceivePacket

5.1.9. void L0_SendPacket_Async (L0_Port Port, L0_Packet Packet)

This Kernel service is called by a Task to send a Packet asynchronously to a Port.

Parameters:

L0_PortID Port - identifies the Port, to which the calling Task wants to send a

Packet.
L0_Packet Packet - the Packet that has to be sent, allocated from the packet Pool

Return value:

None

Pre-conditions:

• Packet must have been allocated by the function L0_AllocatePacket.

Post-conditions:

• The calling task will remain on the READY List

FIGURE: TBD

5.1.10. void L0_ReceivePacket_Async (L0_Port Port, L0_Packet Packet)

This Kernel service is called by a Task to receive a Packet asynchronously from a Port.

Parameters:

L0_PortID Port - identifies the Port, to which the calling Task wants to send a

Packet.
L0_Packet Packet - a packet allocated from the Packet Pool

Return value:

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 46 of 60

None

Pre-conditions:

• Packet must have been allocated by the function L0_AllocatePacket.

Post-conditions:

• The calling task will remain on the READY List

FIGURE: TBD

5.1.11. L0_Status L0_WaitForPacket__{NW|W|WT } (L0_PortID Port, L0_Packet, L0_Timeout
Timeout)

This Kernel service is called by a Task to resynchronize on Packets send earlier using the
L0_SendPacketAsync service

Parameters:

L0_PortID Port - identifies the Port, to which the calling Task wants to send a

Packet.
L0_Packet Packet - the preallocated Packet

L0_Timeout Timeout - Timeout value.

Return value:

RC_OK - service terminated successfully (there was a waiting Packet in the Port)

RC_FAIL - service failed (no corresponding Packet in the Port)

RC_FAIL_TO - service failed and returned after Timeout

Pre-conditions:

• This service should have been preceded by a L0_SendPacket_Async or L0_ReceivePacket_Async

Post-conditions:

• The preallocated Packet should contain a pointer to a previously allocated Packet from the Packet
Pool

FIGURE: TBD

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 47 of 60

5.2. Function called internally by the API services in the context of the
calling Task

5.2.1. void L0_InsertPacketInKernel (L0_Packet)

This function is called internally by the API services in the context of the calling Task to insert a service
request packet into the Kernel and switches context to the kernel. Upon return the context will have been
restored.

Parameters:

L0_Packet Packet - the (pre)allocated Service Request Packet

Return value:

None
Pre-conditions:

• The Packet header fields must have been correctly filled in according to the requested service

Post-conditions:

• The return value and all other header fields and data are updated

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 48 of 60

void L0_insertPacketInKernel

 (

 L0_Packet *Packet

)

L0List_removeTask (L0_ReadyList, requestingTask)

L0List_insertTask (L0_ReadyList, L0_KernelTask);

Switch to Kernel

requestingTask = id2tcr (Packet->TaskID)

L0List_insertPacket(L0_KernelPort.WaitingList, Packet)

Critical Section

Figure 29. Algorithm of the procedure L0_insertPacketInKernel

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 49 of 60

5.3. Kernel Internal API calls

5.3.1. void L0_KernelLoop (void)

The Kernel Task executes its function to perform the main loop of the Kernel Task.

Parameters:

No parameters

Pre-conditions:

to be started before all other tasks and when all nodes have been booted

Post-conditions:
void (as infinite loop)

Remarks:

The Kernel Task executes L0_Kernel_Loop to process all requests from the Tasks and from the

hardware layer. These requests have been put as Packets on the Waiting List of the Kernel Port.
Whenever the Waiting List is empty, the Kernel Task is set in the WAITING state (i.e. removed
from the READY List).
The Kernel Task is re-inserted in the READY List when a new Packet is put on the Waiting List of
the Kernel Port. If the Kernel Task is the highest priority task in the READY List, the CPU Context
is switched to it.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 50 of 60

void L0_KernelLoop ()

Packet = L0List_getHeadElement(L0_KernelPort.WaitingList)

[isLocalService (Packet)]

[Packet-ServiceID == L0_SID_RETURN]

L0_returnPacketService (Packet)

L0_sendreceivePacketService (Packet)

[Packet->ServiceID == L0_SID_SEND_PACKET

OR

Packet->ServiceID == L0_SID_RECEIVE_PACKET]

L0_startTaskService (Packet)

[Packet->ServiceID == L0_SID_START_TASK

(id. STOP, SUSPEND, RESUME)]

Removes Packet from Waiting List

[Packet != NULL]

L0_makeTaskReady (driverTask)

[isRemoteService (Packet)]

driverTask = L0_routeTask (Packet->DestinationPort)

L0List_insertPacket (driverTask->TaskInputPort->WaitingList, Packet)

exception

L0_removeTask (L0_ReadyList, KernelTask)

[Packet == NULL (list is empty)]

L0_Reschedule ()

[L0_isReady (driverTask)]

Critical Section

Figure 30. Algorithm of the procedure L0_KernelLoop

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 51 of 60

5.3.2. void L0_AllocatePacketService(L0_Packet Packet)

The Kernel Task calls this procedure to process the specified Packet that requests to allocate a Packet
from the Packet Pool.

FIGURE TBD

Parameters:

L0_Packet Packet - the Packet that has to be served.

Return value:

void

Pre-conditions:

• The Task, owning Packet, is not on the READY List

• The calling Task is the Kernel Task

Post-conditions:

• If the Packet Pool contains a Packet, then that Packet is passed to the highest priority Task waiting
for the requested allocation

• Next the Task is added to the READY List. At that, Status of Packet is set to L0_RC_OK.

• In case of the [_W][_T] version: If the Packet Pool does not contain a Packet, then Packet is set

on the Waiting List of the Packet Pool.

• In case of the [_NW] version: If the Packet Pool does not contain a Packet, then the Task is added
to the READY List. At that, Status of Packet is set to RC_FAIL

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 52 of 60

Figure 31. Algorithm of the procedure L0_AllocatePacketservice TBD

5.3.3. void L0_DeallocatePacketService(L0_Packet Packet)

The Kernel Task calls this procedure to de-allocate the specified Packet.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 53 of 60

void L0_DeallocatePacketService

 (

 L0_Packet Packet

)

L0_InsertPacketInPool

Insert Task in READY List

Insert Waiting Task in READY List

[Waiting Tasks for Packet]

[Empty waiting list]

Packet->Requesting TaskID = Waiting Task

Figure 32. Algorithm of the procedure L0_DeallocatePacketservice

FIGURE TBD

Parameters:

L0_Packet Packet - the Packet that has to be served.

Return value:

void

Pre-conditions:

• The Task, owning Packet, is not in the READY List

• The calling Task is the Kernel Task

Post-conditions:

• If there is (are) waiting allocation request(s) in the Packet Pool, then Packet is passed to the

highest priority Task one

• Next this waiting Task is put on the READY List.

• The deallocating Task is added to the READY List. At that Status of Packet is set to L0_RC_OK.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 54 of 60

5.3.4. void L0_SendPacketService(L0_Packet Packet)

The Kernel Task calls this procedure to process a send request

Parameters:

L0_Packet Packet - the Packet that has to be send

Return value:

void

Pre-conditions:

• The Packet is a send request packet

• The destination Port is local

Post-conditions:

• If the DestinationPort of Packet is remote than the Packet is inserted into the Input Port of the

appropriate Link Driver Task.

• If there is a complementary Packet on the Waiting List of the Port
1
 then Packet has synchronized

with that complementary Packet.

• In case of the [_W][_T] version:If there is no complementary Packet waiting in the Waiting List of
the Port then Packet set on the Waiting List of the Port.

• In case of the [Wait-less/Timeout-less] version: TBD.

1
 Local Port or Task Input Port or Driver Input Port

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 55 of 60

void L0_sendreceivePacketService

 (

 L0_Packet *Packet

)

waitingPacket = L0List_HeadElement(destPort->WaitingList)

L0_synchronizePackets

 (

 sndPacket,

 rcvPacket

)

sndPacket = Packet

 rcvPacket = waitingPacket

L0List_insertPacket(destPort->WaitingList, Packet)

[L0List_isEmpty (destPort->WaitingList)]

destPort = Packet->DestinationPortID

[waitingPacket->ServiceID == Packet->ServiceID]

rcvPacket = Packet

 sndPacket = waitingPacket

waitingPacket = L0List_getHeadElement(destPort->WaitingList)

[Packet->ServiceID ==

 L0_SID_SEND_PACKET]

removes Packet

from WaitingList

does NOT remove Packet

from WaitingList,

just to check

if the waiting Packet is complementary

Figure 33. Algorithm of the procedure L0_SendPacketservice

5.3.5. void L0_ReceivePacketService(L0_Packet Packet)

The Kernel Task calls this procedure to process the receive request of the specified Packet.

See Section 5.3.4.

5.3.6. void L0_ReturnPacketService(L0_Packet Packet)

The Kernel Task calls this function to process the return or acknowledgement of a kernel request service
and makes the requesting Task READY again..

Parameters:

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 56 of 60

L0_Packet Packet - the return Packet of the requested service

Pre-conditions:

• The Task originally requesting the kernel service is not in the READY List

• The Packet originates from a remote Kernel Task and was copied into a Packet allocated by a Rx
Driver.

Post-conditions:

• The Task originally requesting the kernel service is put on the READY List

• The Task originally requesting the kernel service will return with the status in the Packet.header
fields

• Header fields and Data are copied into the Task’s preallocated Packet

• The Packet allocated by the RxDriver is released

void L0_returnPacketService

 (

 L0_Packet *Packet

)

returnTask->RequestPacket->Status = Packet->Status

L0_releasePacket (Packet)

returnTask = L0_id2tcr(Packet->DestinationPortID)

L0_makeTaskReady (returnTask)

 In case of receive, also copy the Data fields, if necessary

 Remote packet from static allocated Rx driver pool.

Figure 34. Algorithm of the procedure L0_ReturnPacketService

5.3.7. void L0_SynchronizePackets (L0_Packet SendRequestPacket, L0_Packet
ReceiveRequestPacket)

The Kernel Task calls this function to synchronise a send and receive request, meanwhile swapping the
complementary fields

Parameters:

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 57 of 60

L0_Packet SendRequestPacket - the Packet that was sent

L0_Packet ReceiveRequestPacket - the Packet used to receive a Packet

Pre-conditions:

• The Packets are complementary

Post-conditions:

• Fields are swapped

• The Tasks are made READY when local

• Return Packet(s) sent to remote nodes when Task is remote

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 58 of 60

void L0_synchronizePackets

 (

 L0_Packet *sndPacket,

 L0_Packet *rcvPacket

)

[isLocalTaskID (sndPacket->requestingTaskID)]

L0_makeTaskReady (sndPacket->requestingTaskID)

L0_makeTaskReady (driverTask)

/* synchronize and exchange data */

 rcvPacket->DataSize = sndPacket->DataSize

 memcpy (rcvPacket->Data, sndPacket->Data, sndPacket->DataSize)

 sndPacket->Status = L0_RC_OK

 rcvPacket->Status = L0_RC_OK

sndPacket->DestinationPortID = sndPacket->RequestingTaskID

sndPacket->ServiceID = L0_SID_RETURN

driverTask = L0_routeTask (sndPacket->DestinationPortID)

L0List_insertPacket (driverTask->TaskInputPort->WaitingList, sndPacket)

[isLocalTaskID (rcvPacket->requestingTaskID)]

L0_makeTaskReady (rcvPacket->requestingTaskID)

L0_makeTaskReady (driverTask)

rcvPacket->DestinationPortID = rcvPacket->RequestingTaskID

rcvPacket->ServiceID = L0_SID_RETURN

driverTask = L0_routeTask (rcvPacket->DestinationPortID)

L0List_insertPacket (driverTask->TaskInputPort->WaitingList, rcvPacket)

[L0_isReady (driverTask)]

[L0_isReady (driverTask)]

Same for

rcvPacket

as for sndPacket

Figure 35. Algorithm of the procedure L0_SynchronizePackets

5.3.8. void L0_MakeTaskReady(L0_TaskControlRecord Task)

The Kernel Task calls this function to put the specified Task on the READY List.

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 59 of 60

Parameters:
L0_TaskControlRecord Task (the Task to be made READY)

Return value:

void

Pre-conditions:

• Task is not in the READY List

• The calling Task is the Kernel Task

• Task is not the Kernel Task

Post-conditions:

• Task is put on the READY List.

Figure 36. Algorithm of the procedure L0Kernel_MakeTaskReady

5.3.9. void L0_Reschedule (L0_TaskControlRecord Task)

TBD

5.4. Implementation notes
• Remote service handling

• Ready list manipulation

• ISRs

• Rx/Tx driver tasks

TBD

OpenComRTOS: L0 Architectural description Version 1.0.14

Page 60 of 60

6. Issues

ID of ISSUE Matter of Issue

